ethereum blockchain

24 results back to index


pages: 271 words: 52,814

Blockchain: Blueprint for a New Economy by Melanie Swan

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

23andMe, Airbnb, altcoin, Amazon Web Services, asset allocation, banking crisis, basic income, bioinformatics, bitcoin, blockchain, capital controls, cellular automata, central bank independence, clean water, cloud computing, collaborative editing, Conway's Game of Life, crowdsourcing, cryptocurrency, disintermediation, Edward Snowden, en.wikipedia.org, ethereum blockchain, fault tolerance, fiat currency, financial innovation, Firefox, friendly AI, Hernando de Soto, intangible asset, Internet Archive, Internet of things, Khan Academy, Kickstarter, lifelogging, litecoin, Lyft, M-Pesa, microbiome, Network effects, new economy, peer-to-peer, peer-to-peer lending, peer-to-peer model, personalized medicine, post scarcity, prediction markets, QR code, ride hailing / ride sharing, Satoshi Nakamoto, Search for Extraterrestrial Intelligence, SETI@home, sharing economy, Skype, smart cities, smart contracts, smart grid, software as a service, technological singularity, Turing complete, unbanked and underbanked, underbanked, web application, WikiLeaks

-M2M/IoT Bitcoin Payment Network to Enable the Machine Economy and consensus models, Blockchain AI: Consensus as the Mechanism to Foster “Friendly” AI-Blockchain Consensus Increases the Information Resolution of the Universe extensibility of, Extensibility of Blockchain Technology Concepts for facilitating big data predictive task automation, Blockchain Layer Could Facilitate Big Data’s Predictive Task Automation future applications, Blockchain AI: Consensus as the Mechanism to Foster “Friendly” AI-Blockchain Consensus Increases the Information Resolution of the Universe limitations of (see limitations) organizational capabilities, Blockchain Technology Is a New and Highly Effective Model for Organizing Activity tracking capabilities, Fundamental Economic Principles: Discovery, Value Attribution, and Exchange-Fundamental Economic Principles: Discovery, Value Attribution, and Exchange blockchain-recorded marriage, Decentralized Governance Services BlockCypher, Blockchain Development Platforms and APIs BOINC, DAOs and DACs bond deposit postings, Technical Challenges Brin, David, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel BTCjam, Financial Services business model challenges, Business Model Challenges Buttercoin, Financial Services Byrne, Patrick, Financial Services C Campus Cryptocurrency Network, Campuscoin Campuscoin, Campuscoin-Campuscoin censorship, Internet (see decentralized DNS system) Chain, Blockchain Development Platforms and APIs challenges (see see limitations) charity donations, Charity Donations and the Blockchain—Sean’s Outpost China, Relation to Fiat Currency ChromaWallet, Wallet Development Projects Chronobit, Virtual Notary, Bitnotar, and Chronobit Circle Internet Financial, eWallet Services and Personal Cryptosecurity Codius, Financial Services coin drops, Coin Drops as a Strategy for Public Adoption coin mixing, eWallet Services and Personal Cryptosecurity coin, defining, Terminology and Concepts, Currency, Token, Tokenizing Coinapult, Global Public Health: Bitcoin for Contagious Disease Relief Coinapult LOCKS, Relation to Fiat Currency Coinbase, Merchant Acceptance of Bitcoin, Financial Services CoinBeyond, Merchant Acceptance of Bitcoin Coinffeine, Financial Services Coinify, Merchant Acceptance of Bitcoin Coinprism, Wallet Development Projects Coinspace, Crowdfunding CoinSpark, Wallet Development Projects colored coins, Smart Property, Blockchain 2.0 Protocol Projects community supercomputing, Community Supercomputing Communitycoin, Currency, Token, Tokenizing-Communitycoin: Hayek’s Private Currencies Vie for Attention complementary currency systems, Demurrage Currencies: Potentially Incitory and Redistributable concepts, redefining, Terminology and Concepts-Terminology and Concepts consensus models, Blockchain AI: Consensus as the Mechanism to Foster “Friendly” AI-Blockchain Consensus Increases the Information Resolution of the Universe consensus-derived information, Blockchain Consensus Increases the Information Resolution of the Universe contagious disease relief, Global Public Health: Bitcoin for Contagious Disease Relief contracts, Blockchain 2.0: Contracts-The Blockchain as a Path to Artificial Intelligence (see also smart contracts) crowdfunding, Crowdfunding-Crowdfunding financial services, Financial Services-Financial Services marriage, Decentralized Governance Services prediction markets, Bitcoin Prediction Markets smart property, Smart Property-Smart Property wallet development projects, Wallet Development Projects copyright protection, Monegraph: Online Graphics Protection Counterparty, Blockchain 2.0 Protocol Projects, Counterparty Re-creates Ethereum’s Smart Contract Platform Counterparty currency (XCP), Currency, Token, Tokenizing Counterwallet, Wallet Development Projects crowdfunding, Crowdfunding-Crowdfunding cryptocurrencies benefits of, Currency, Token, Tokenizing cryptosecurity, eWallet Services and Personal Cryptosecurity eWallet services, eWallet Services and Personal Cryptosecurity mechanics of, How a Cryptocurrency Works-Merchant Acceptance of Bitcoin merchant acceptance, Merchant Acceptance of Bitcoin cryptosecurity challenges, eWallet Services and Personal Cryptosecurity cryptowallet, Blockchain Neutrality currency, Technology Stack: Blockchain, Protocol, Currency-Regulatory Status, Currency, Token, Tokenizing-Extensibility of Demurrage Concept and Features Campuscoin, Campuscoin-Campuscoin coin drops, Coin Drops as a Strategy for Public Adoption Communitycoin, Communitycoin: Hayek’s Private Currencies Vie for Attention-Communitycoin: Hayek’s Private Currencies Vie for Attention cryptocurrencies, How a Cryptocurrency Works-Merchant Acceptance of Bitcoin decentralizing, Communitycoin: Hayek’s Private Currencies Vie for Attention defining, Currency, Token, Tokenizing-Currency, Token, Tokenizing, Currency: New Meanings demurrage, Demurrage Currencies: Potentially Incitory and Redistributable-Extensibility of Demurrage Concept and Features double-spend problem, The Double-Spend and Byzantine Generals’ Computing Problems fiat currency, Relation to Fiat Currency-Relation to Fiat Currency monetary and nonmonetary, Currency Multiplicity: Monetary and Nonmonetary Currencies-Currency Multiplicity: Monetary and Nonmonetary Currencies new meanings, Currency: New Meanings technology stack, Technology Stack: Blockchain, Protocol, Currency-Technology Stack: Blockchain, Protocol, Currency currency mulitplicity, Currency Multiplicity: Monetary and Nonmonetary Currencies-Currency Multiplicity: Monetary and Nonmonetary Currencies D DAOs, DAOs and DACs-DAOs and DACs DAOs/DACs, DAOs and DACs-DAOs and DACs, Batched Notary Chains as a Class of Blockchain Infrastructure, Blockchain Government Dapps, Dapps-Dapps, Extensibility of Demurrage Concept and Features Dark Coin, eWallet Services and Personal Cryptosecurity dark pools, Technical Challenges Dark Wallet, eWallet Services and Personal Cryptosecurity DASs, DASs and Self-Bootstrapped Organizations DDP, Crowdfunding decentralization, Smart Contracts, Centralization-Decentralization Tension and Equilibrium decentralized applications (Dapps), Dapps-Dapps decentralized autonomous organization/corporation (DAO) (see DAOs/DACs) decentralized autonomous societies (DASs), DASs and Self-Bootstrapped Organizations decentralized autonomy, eWallet Services and Personal Cryptosecurity decentralized DNS, Namecoin: Decentralized Domain Name System-Decentralized DNS Functionality Beyond Free Speech: Digital Identity challenges of, Challenges and Other Decentralized DNS Services and digital identity, Decentralized DNS Functionality Beyond Free Speech: Digital Identity-Decentralized DNS Functionality Beyond Free Speech: Digital Identity DotP2P, Challenges and Other Decentralized DNS Services decentralized file storage, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation decentralized secure file serving, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation deeds, Decentralized Governance Services demurrage currencies, Demurrage Currencies: Potentially Incitory and Redistributable-Extensibility of Demurrage Concept and Features action-incitory features, Extensibility of Demurrage Concept and Features limitations of, Demurrage Currencies: Potentially Incitory and Redistributable digital art, Digital Art: Blockchain Attestation Services (Notary, Intellectual Property Protection)-Personal Thinking Blockchains (see also blockchain attestation services) hashing and timestamping, Hashing Plus Timestamping-Limitations online graphics protection, Monegraph: Online Graphics Protection digital cryptography, Ethereum: Turing-Complete Virtual Machine, Public/Private-Key Cryptography 101 digital divide, defining, Digital Divide of Bitcoin digital identity verification, Blockchain 2.0: Contracts, Smart Property, Wallet Development Projects, Digital Identity Verification-Digital Divide of Bitcoin, Limitations, Decentralized Governance Services, Liquid Democracy and Random-Sample Elections, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy, Privacy Challenges for Personal Records dispute resolution, PrecedentCoin: Blockchain Dispute Resolution DIYweathermodeling, Community Supercomputing DNAnexus, Genomecoin, GenomicResearchcoin Dogecoin, Technology Stack: Blockchain, Protocol, Currency, Currency Multiplicity: Monetary and Nonmonetary Currencies, Scandals and Public Perception DotP2P, Challenges and Other Decentralized DNS Services double-spend problem, The Double-Spend and Byzantine Generals’ Computing Problems DriveShare, DAOs and DACs dynamic redistribution of currency (see demurrage currency) E education (see learning and literacy) Electronic Freedom Foundation (EFF), Distributed Censorship-Resistant Organizational Models EMR (electronic medical record) system, EMRs on the Blockchain: Personal Health Record Storage Ethereum, Crowdfunding, Blockchain 2.0 Protocol Projects, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Ethereum: Turing-Complete Virtual Machine-Counterparty Re-creates Ethereum’s Smart Contract Platform eWallet services, eWallet Services and Personal Cryptosecurity ExperimentalResultscoin, Blockchain Academic Publishing: Journalcoin F Fairlay, Bitcoin Prediction Markets fiat currency, Relation to Fiat Currency-Relation to Fiat Currency file serving, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Ethereum: Turing-Complete Virtual Machine file storage, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation financial services, Regulatory Status, Financial Services-Financial Services, Blockchain Technology Is a New and Highly Effective Model for Organizing Activity, Government Regulation Fitbit, Personal Thinking Blockchains, Blockchain Health Research Commons, Extensibility of Demurrage Concept and Features Florincoin, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel Folding@Home, DAOs and DACs, Blockchain Science: Gridcoin, Foldingcoin, Community Supercomputing franculates, Blockchain Government freedom of speech, Namecoin: Decentralized Domain Name System, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel (see also decentralized DNS system) Freicoin, Demurrage Currencies: Potentially Incitory and Redistributable fundraising (see crowdfunding) futarchy, Futarchy: Two-Step Democracy with Voting + Prediction Markets-Futarchy: Two-Step Democracy with Voting + Prediction Markets G GBIcoin, Demurrage Currencies: Potentially Incitory and Redistributable GBIs (Guaranteed Basic Income initiatives), Demurrage Currencies: Potentially Incitory and Redistributable Gems, Blockchain Development Platforms and APIs, Dapps Genecoin, Blockchain Genomics Genomecoin, Genomecoin, GenomicResearchcoin Genomic Data Commons, Genomecoin, GenomicResearchcoin genomic sequencing, Blockchain Genomics 2.0: Industrialized All-Human-Scale Sequencing Solution-Genomecoin, GenomicResearchcoin GenomicResearchcoin, Genomecoin, GenomicResearchcoin genomics, consumer, Blockchain Genomics-Genomecoin, GenomicResearchcoin Git, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation GitHub, Blockchain Academic Publishing: Journalcoin, Currency Multiplicity: Monetary and Nonmonetary Currencies global public health, Global Public Health: Bitcoin for Contagious Disease Relief GoCoin, Financial Services GoToLunchcoin, Terminology and Concepts governance, Blockchain Government-Societal Maturity Impact of Blockchain Governance decentralized services, Decentralized Governance Services-Decentralized Governance Services dispute resolution, PrecedentCoin: Blockchain Dispute Resolution futarchy, Futarchy: Two-Step Democracy with Voting + Prediction Markets-Futarchy: Two-Step Democracy with Voting + Prediction Markets Liquid Democracy system, Liquid Democracy and Random-Sample Elections-Liquid Democracy and Random-Sample Elections personalized governance services, Blockchain Government random-sample elections, Random-Sample Elections societal maturity impact of blockchain governance, Societal Maturity Impact of Blockchain Governance government regulation, Regulatory Status, Government Regulation-Government Regulation Gridcoin, Blockchain Science: Gridcoin, Foldingcoin-Blockchain Science: Gridcoin, Foldingcoin H hashing, Hashing Plus Timestamping-Limitations, Batched Notary Chains as a Class of Blockchain Infrastructure, Technical Challenges Hayek, Friedrich, Communitycoin: Hayek’s Private Currencies Vie for Attention, Demurrage Currencies: Potentially Incitory and Redistributable, Conclusion, The Blockchain Is an Information Technology health, Blockchain Health-Virus Bank, Seed Vault Backup as demurrage currency, Extensibility of Demurrage Concept and Features doctor vendor RFP services, Doctor Vendor RFP Services and Assurance Contracts health notary services, Blockchain Health Notary health research commons , Blockchain Health Research Commons health spending, Healthcoin healthcare decision making and advocacy, Liquid Democracy and Random-Sample Elections personal health record storage, EMRs on the Blockchain: Personal Health Record Storage virus bank and seed vault backup, Virus Bank, Seed Vault Backup Healthcoin, Healthcoin, Demurrage Currencies: Potentially Incitory and Redistributable I identity authentication, eWallet Services and Personal Cryptosecurity, Blockchain 2.0: Contracts, Smart Property, Smart Property, Wallet Development Projects, Digital Identity Verification-Digital Divide of Bitcoin, Limitations, Decentralized Governance Services, Liquid Democracy and Random-Sample Elections, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy, Privacy Challenges for Personal Records Indiegogo, Crowdfunding, Dapps industry scandals, Scandals and Public Perception infrastructure needs and issues, Technical Challenges inheritance gifts, Smart Contracts intellectual property, Monegraph: Online Graphics Protection (see also digital art) Internet administration, Distributed Censorship-Resistant Organizational Models Internet Archive, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Personal Thinking Blockchains Internet censorship prevention (see Decentralized DNS system) Intuit Quickbooks, Merchant Acceptance of Bitcoin IP protection, Hashing Plus Timestamping IPFS project, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation J Johnston, David, Blockchain Technology Could Be Used in the Administration of All Quanta Journalcoin, Blockchain Academic Publishing: Journalcoin Judobaby, Crowdfunding justice applications for censorship-resistant organizational models, Distributed Censorship-Resistant Organizational Models-Distributed Censorship-Resistant Organizational Models digital art, Digital Art: Blockchain Attestation Services (Notary, Intellectual Property Protection)-Personal Thinking Blockchains (see also digital art, blockchain attestation services) digital identity verification, Blockchain 2.0: Contracts, Smart Property, Wallet Development Projects, Digital Identity Verification-Digital Divide of Bitcoin, Limitations, Decentralized Governance Services, Liquid Democracy and Random-Sample Elections, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy, Privacy Challenges for Personal Records freedom of speech/anti-censorship, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel governance, Blockchain Government-Societal Maturity Impact of Blockchain Governance (see also governance) Namecoin, Namecoin: Decentralized Domain Name System-Decentralized DNS Functionality Beyond Free Speech: Digital Identity, Monegraph: Online Graphics Protection (see also decentralized DNS) K Kickstarter, Crowdfunding, Community Supercomputing Kipochi, Blockchain Neutrality, Global Public Health: Bitcoin for Contagious Disease Relief, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy Koinify, Crowdfunding, Dapps Kraken, Financial Services L latency, Blockchain 2.0 Protocol Projects, Technical Challenges, Technical Challenges, Scandals and Public Perception LaZooz, Dapps, Campuscoin, Extensibility of Demurrage Concept and Features Learncoin, Learncoin learning and literacy, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy-Learning Contract Exchanges learning contract exchanges, Learning Contract Exchanges Ledra Capital, Blockchain 2.0: Contracts, Ledra Capital Mega Master Blockchain List legal implications crowdfunding, Crowdfunding smart contracts, Smart Contracts lending, trustless, Smart Property Lighthouse, Crowdfunding limitations, Limitations-Overall: Decentralization Trends Likely to Persist business model challenges, Business Model Challenges government regulation, Government Regulation-Government Regulation personal records privacy challenges, Privacy Challenges for Personal Records scandals and public perception, Scandals and Public Perception-Scandals and Public Perception technical challenges, Technical Challenges-Technical Challenges Liquid Democracy system, Liquid Democracy and Random-Sample Elections-Liquid Democracy and Random-Sample Elections Litecoin, Technology Stack: Blockchain, Protocol, Currency, Technology Stack: Blockchain, Protocol, Currency, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel, Currency Multiplicity: Monetary and Nonmonetary Currencies, Technical Challenges literacy (see learning and literacy) LTBcoin, Wallet Development Projects, Currency, Token, Tokenizing M M2M/IoT infrastructure, M2M/IoT Bitcoin Payment Network to Enable the Machine Economy, Blockchain Development Platforms and APIs, Blockchain Academic Publishing: Journalcoin-The Blockchain Is Not for Every Situation, The Blockchain Is an Information Technology Maidsafe, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Technical Challenges Manna, Crowdfunding marriage, blockchain recorded, Decentralized Governance Services Mastercoin, Blockchain 2.0 Protocol Projects mechanics of cryptocurrencies, How a Cryptocurrency Works Medici, Financial Services mega master blockchain list, Ledra Capital Mega Master Blockchain List-Ledra Capital Mega Master Blockchain List Melotic, Crowdfunding, Wallet Development Projects merchant acceptance, Merchant Acceptance of Bitcoin merchant payment fees, Summary: Blockchain 1.0 in Practical Use messaging, Ethereum: Turing-Complete Virtual Machine, Dapps, Challenges and Other Decentralized DNS Services, Technical Challenges MetaDisk, DAOs and DACs mindfiles, Personal Thinking Blockchains MIT Bitcoin Project, Campuscoin Monegraph, Monegraph: Online Graphics Protection money (see currency) MOOCs (massive open online courses), Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy Moroz, Tatiana, Communitycoin: Hayek’s Private Currencies Vie for Attention multicurrency systems, Demurrage Currencies: Potentially Incitory and Redistributable N Nakamoto, Satoshi, Blockchain 2.0: Contracts, Blockchain 2.0: Contracts Namecoin, Namecoin: Decentralized Domain Name System-Decentralized DNS Functionality Beyond Free Speech: Digital Identity, Monegraph: Online Graphics Protection Nationcoin, Coin Drops as a Strategy for Public Adoption, Demurrage Currencies: Potentially Incitory and Redistributable notary chains, Batched Notary Chains as a Class of Blockchain Infrastructure notary services, Hashing Plus Timestamping, Blockchain Health Notary NSA surveillance, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel NXT, Technology Stack: Blockchain, Protocol, Currency, Blockchain 2.0 Protocol Projects O offline wallets, Technical Challenges OneName, Digital Identity Verification-Digital Identity Verification OneWallet, Wallet Development Projects online graphics protection, Monegraph: Online Graphics Protection-Monegraph: Online Graphics Protection Open Assets, Blockchain 2.0 Protocol Projects Open Transactions, Blockchain 2.0 Protocol Projects OpenBazaar, Dapps, Government Regulation Ostel, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel P passports, Decentralized Governance Services PayPal, The Double-Spend and Byzantine Generals’ Computing Problems, Financial Services, Distributed Censorship-Resistant Organizational Models peer-to-peer lending, Financial Services Peercoin, Technology Stack: Blockchain, Protocol, Currency personal cryptosecurity, eWallet Services and Personal Cryptosecurity personal data rights, Blockchain Genomics personal mindfile blockchains, Personal Thinking Blockchains personal thinking chains, Personal Thinking Blockchains-Personal Thinking Blockchains physical asset keys, Blockchain 2.0: Contracts, Smart Property plagiarism detection/avoidance, Blockchain Academic Publishing: Journalcoin Precedent, PrecedentCoin: Blockchain Dispute Resolution, Terminology and Concepts prediction markets, Bitcoin Prediction Markets, DASs and Self-Bootstrapped Organizations, Decentralized Governance Services, Futarchy: Two-Step Democracy with Voting + Prediction Markets-Futarchy: Two-Step Democracy with Voting + Prediction Markets Predictious, Bitcoin Prediction Markets predictive task automation, Blockchain Layer Could Facilitate Big Data’s Predictive Task Automation privacy challenges, Privacy Challenges for Personal Records private key, eWallet Services and Personal Cryptosecurity Proof of Existence, Proof of Existence-Proof of Existence proof of stake, Blockchain 2.0 Protocol Projects, PrecedentCoin: Blockchain Dispute Resolution, Technical Challenges proof of work, PrecedentCoin: Blockchain Dispute Resolution, Technical Challenges-Technical Challenges property ownership, Smart Property property registration, Decentralized Governance Services public documents registries, Decentralized Governance Services public health, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Global Public Health: Bitcoin for Contagious Disease Relief public perception, Scandals and Public Perception-Scandals and Public Perception public/private key cryptography, Public/Private-Key Cryptography 101-Public/Private-Key Cryptography 101 publishing, academic, Blockchain Academic Publishing: Journalcoin-Blockchain Academic Publishing: Journalcoin pull technology, eWallet Services and Personal Cryptosecurity push technology, eWallet Services and Personal Cryptosecurity R random-sample elections, Random-Sample Elections Realcoin, Relation to Fiat Currency redistribution of currency (see demurrage currency) regulation, Government Regulation-Government Regulation regulatory status, Regulatory Status reputation vouching, Ethereum: Turing-Complete Virtual Machine Researchcoin, Blockchain Academic Publishing: Journalcoin REST APIs, Technical Challenges Ripple, Technology Stack: Blockchain, Protocol, Currency, Relation to Fiat Currency, Blockchain 2.0 Protocol Projects Ripple Labs, Financial Services Roadcoin, Blockchain Government S Saldo.mx, Blockchain Neutrality scandals, Scandals and Public Perception science, Blockchain Science: Gridcoin, Foldingcoin-Charity Donations and the Blockchain—Sean’s Outpost community supercomputing, Community Supercomputing global public health, Global Public Health: Bitcoin for Contagious Disease Relief Sean's Outpost, Charity Donations and the Blockchain—Sean’s Outpost secret messaging, Ethereum: Turing-Complete Virtual Machine security issues, Technical Challenges self-bootstrapped organizations, DASs and Self-Bootstrapped Organizations self-directing assets, Automatic Markets and Tradenets self-enforced code, Smart Property self-sufficiency, Smart Contracts SETI@home, Blockchain Science: Gridcoin, Foldingcoin, Community Supercomputing size and bandwidth, Technical Challenges smart contracts, Smart Contracts-Smart Contracts, Smart Contract Advocates on Behalf of Digital Intelligence automatic markets and tradenets, Automatic Markets and Tradenets Counterparty, Counterparty Re-creates Ethereum’s Smart Contract Platform DAOs/DACs, DAOs and DACs-DAOs and DACs Dapps, Dapps-Dapps DASs, DASs and Self-Bootstrapped Organizations Ethereum, Ethereum: Turing-Complete Virtual Machine increasingly autonomous, Dapps, DAOs, DACs, and DASs: Increasingly Autonomous Smart Contracts-Automatic Markets and Tradenets smart literacy contracts, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy-Learning Contract Exchanges smart property, Smart Property-Smart Property, Monegraph: Online Graphics Protection smartwatch, Extensibility of Demurrage Concept and Features Snowden, Edward, Distributed Censorship-Resistant Organizational Models social contracts, Smart Contracts social network currencies, Currency Multiplicity: Monetary and Nonmonetary Currencies Stellar, Blockchain Development Platforms and APIs stock market, Financial Services Storj, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Dapps, Technical Challenges Stripe, Blockchain Development Platforms and APIs supercomputing, Community Supercomputing Svalbard Global Seed Vault, Virus Bank, Seed Vault Backup Swancoin, Smart Property swaps exchange, Financial Services Swarm, Crowdfunding, Dapps Swarm (Ethereum), Ethereum: Turing-Complete Virtual Machine Swarmops, Crowdfunding T Tatianacoin, Communitycoin: Hayek’s Private Currencies Vie for Attention technical challenges, Technical Challenges-Technical Challenges Tendermint, Technical Challenges Tera Exchange, Financial Services terminology, Terminology and Concepts-Terminology and Concepts 37Coins, Global Public Health: Bitcoin for Contagious Disease Relief throughput, Technical Challenges timestamping, Hashing Plus Timestamping-Limitations titling, Decentralized Governance Services tradenets, Automatic Markets and Tradenets transaction fees, Summary: Blockchain 1.0 in Practical Use Tribecoin, Coin Drops as a Strategy for Public Adoption trustless lending, Smart Property Truthcoin, Futarchy: Two-Step Democracy with Voting + Prediction Markets Turing completeness, Ethereum: Turing-Complete Virtual Machine Twister, Dapps Twitter, Monegraph: Online Graphics Protection U Uber, Government Regulation unbanked/underbanked markets, Blockchain Neutrality usability issues, Technical Challenges V value chain composition, How a Cryptocurrency Works versioning issues, Technical Challenges Virtual Notary, Virtual Notary, Bitnotar, and Chronobit voting and prediction, Futarchy: Two-Step Democracy with Voting + Prediction Markets-Futarchy: Two-Step Democracy with Voting + Prediction Markets W wallet APIs, Blockchain Development Platforms and APIs wallet companies, Wallet Development Projects wallet software, How a Cryptocurrency Works wasted resources, Technical Challenges Wayback Machine, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation Wedbush Securities, Financial Services Whatevercoin, Terminology and Concepts WikiLeaks, Distributed Censorship-Resistant Organizational Models Wikinomics, Community Supercomputing World Citizen project, Decentralized Governance Services X Xapo, eWallet Services and Personal Cryptosecurity Z Zennet Supercomputer, Community Supercomputing Zooko's Triangle, Decentralized DNS Functionality Beyond Free Speech: Digital Identity About the Author Melanie Swan is the Founder of the Institute for Blockchain Studies and a Contemporary Philosophy MA candidate at Kingston University London and Université Paris VIII.

-M2M/IoT Bitcoin Payment Network to Enable the Machine Economy and consensus models, Blockchain AI: Consensus as the Mechanism to Foster “Friendly” AI-Blockchain Consensus Increases the Information Resolution of the Universe extensibility of, Extensibility of Blockchain Technology Concepts for facilitating big data predictive task automation, Blockchain Layer Could Facilitate Big Data’s Predictive Task Automation future applications, Blockchain AI: Consensus as the Mechanism to Foster “Friendly” AI-Blockchain Consensus Increases the Information Resolution of the Universe limitations of (see limitations) organizational capabilities, Blockchain Technology Is a New and Highly Effective Model for Organizing Activity tracking capabilities, Fundamental Economic Principles: Discovery, Value Attribution, and Exchange-Fundamental Economic Principles: Discovery, Value Attribution, and Exchange blockchain-recorded marriage, Decentralized Governance Services BlockCypher, Blockchain Development Platforms and APIs BOINC, DAOs and DACs bond deposit postings, Technical Challenges Brin, David, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel BTCjam, Financial Services business model challenges, Business Model Challenges Buttercoin, Financial Services Byrne, Patrick, Financial Services C Campus Cryptocurrency Network, Campuscoin Campuscoin, Campuscoin-Campuscoin censorship, Internet (see decentralized DNS system) Chain, Blockchain Development Platforms and APIs challenges (see see limitations) charity donations, Charity Donations and the Blockchain—Sean’s Outpost China, Relation to Fiat Currency ChromaWallet, Wallet Development Projects Chronobit, Virtual Notary, Bitnotar, and Chronobit Circle Internet Financial, eWallet Services and Personal Cryptosecurity Codius, Financial Services coin drops, Coin Drops as a Strategy for Public Adoption coin mixing, eWallet Services and Personal Cryptosecurity coin, defining, Terminology and Concepts, Currency, Token, Tokenizing Coinapult, Global Public Health: Bitcoin for Contagious Disease Relief Coinapult LOCKS, Relation to Fiat Currency Coinbase, Merchant Acceptance of Bitcoin, Financial Services CoinBeyond, Merchant Acceptance of Bitcoin Coinffeine, Financial Services Coinify, Merchant Acceptance of Bitcoin Coinprism, Wallet Development Projects Coinspace, Crowdfunding CoinSpark, Wallet Development Projects colored coins, Smart Property, Blockchain 2.0 Protocol Projects community supercomputing, Community Supercomputing Communitycoin, Currency, Token, Tokenizing-Communitycoin: Hayek’s Private Currencies Vie for Attention complementary currency systems, Demurrage Currencies: Potentially Incitory and Redistributable concepts, redefining, Terminology and Concepts-Terminology and Concepts consensus models, Blockchain AI: Consensus as the Mechanism to Foster “Friendly” AI-Blockchain Consensus Increases the Information Resolution of the Universe consensus-derived information, Blockchain Consensus Increases the Information Resolution of the Universe contagious disease relief, Global Public Health: Bitcoin for Contagious Disease Relief contracts, Blockchain 2.0: Contracts-The Blockchain as a Path to Artificial Intelligence (see also smart contracts) crowdfunding, Crowdfunding-Crowdfunding financial services, Financial Services-Financial Services marriage, Decentralized Governance Services prediction markets, Bitcoin Prediction Markets smart property, Smart Property-Smart Property wallet development projects, Wallet Development Projects copyright protection, Monegraph: Online Graphics Protection Counterparty, Blockchain 2.0 Protocol Projects, Counterparty Re-creates Ethereum’s Smart Contract Platform Counterparty currency (XCP), Currency, Token, Tokenizing Counterwallet, Wallet Development Projects crowdfunding, Crowdfunding-Crowdfunding cryptocurrencies benefits of, Currency, Token, Tokenizing cryptosecurity, eWallet Services and Personal Cryptosecurity eWallet services, eWallet Services and Personal Cryptosecurity mechanics of, How a Cryptocurrency Works-Merchant Acceptance of Bitcoin merchant acceptance, Merchant Acceptance of Bitcoin cryptosecurity challenges, eWallet Services and Personal Cryptosecurity cryptowallet, Blockchain Neutrality currency, Technology Stack: Blockchain, Protocol, Currency-Regulatory Status, Currency, Token, Tokenizing-Extensibility of Demurrage Concept and Features Campuscoin, Campuscoin-Campuscoin coin drops, Coin Drops as a Strategy for Public Adoption Communitycoin, Communitycoin: Hayek’s Private Currencies Vie for Attention-Communitycoin: Hayek’s Private Currencies Vie for Attention cryptocurrencies, How a Cryptocurrency Works-Merchant Acceptance of Bitcoin decentralizing, Communitycoin: Hayek’s Private Currencies Vie for Attention defining, Currency, Token, Tokenizing-Currency, Token, Tokenizing, Currency: New Meanings demurrage, Demurrage Currencies: Potentially Incitory and Redistributable-Extensibility of Demurrage Concept and Features double-spend problem, The Double-Spend and Byzantine Generals’ Computing Problems fiat currency, Relation to Fiat Currency-Relation to Fiat Currency monetary and nonmonetary, Currency Multiplicity: Monetary and Nonmonetary Currencies-Currency Multiplicity: Monetary and Nonmonetary Currencies new meanings, Currency: New Meanings technology stack, Technology Stack: Blockchain, Protocol, Currency-Technology Stack: Blockchain, Protocol, Currency currency mulitplicity, Currency Multiplicity: Monetary and Nonmonetary Currencies-Currency Multiplicity: Monetary and Nonmonetary Currencies D DAOs, DAOs and DACs-DAOs and DACs DAOs/DACs, DAOs and DACs-DAOs and DACs, Batched Notary Chains as a Class of Blockchain Infrastructure, Blockchain Government Dapps, Dapps-Dapps, Extensibility of Demurrage Concept and Features Dark Coin, eWallet Services and Personal Cryptosecurity dark pools, Technical Challenges Dark Wallet, eWallet Services and Personal Cryptosecurity DASs, DASs and Self-Bootstrapped Organizations DDP, Crowdfunding decentralization, Smart Contracts, Centralization-Decentralization Tension and Equilibrium decentralized applications (Dapps), Dapps-Dapps decentralized autonomous organization/corporation (DAO) (see DAOs/DACs) decentralized autonomous societies (DASs), DASs and Self-Bootstrapped Organizations decentralized autonomy, eWallet Services and Personal Cryptosecurity decentralized DNS, Namecoin: Decentralized Domain Name System-Decentralized DNS Functionality Beyond Free Speech: Digital Identity challenges of, Challenges and Other Decentralized DNS Services and digital identity, Decentralized DNS Functionality Beyond Free Speech: Digital Identity-Decentralized DNS Functionality Beyond Free Speech: Digital Identity DotP2P, Challenges and Other Decentralized DNS Services decentralized file storage, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation decentralized secure file serving, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation deeds, Decentralized Governance Services demurrage currencies, Demurrage Currencies: Potentially Incitory and Redistributable-Extensibility of Demurrage Concept and Features action-incitory features, Extensibility of Demurrage Concept and Features limitations of, Demurrage Currencies: Potentially Incitory and Redistributable digital art, Digital Art: Blockchain Attestation Services (Notary, Intellectual Property Protection)-Personal Thinking Blockchains (see also blockchain attestation services) hashing and timestamping, Hashing Plus Timestamping-Limitations online graphics protection, Monegraph: Online Graphics Protection digital cryptography, Ethereum: Turing-Complete Virtual Machine, Public/Private-Key Cryptography 101 digital divide, defining, Digital Divide of Bitcoin digital identity verification, Blockchain 2.0: Contracts, Smart Property, Wallet Development Projects, Digital Identity Verification-Digital Divide of Bitcoin, Limitations, Decentralized Governance Services, Liquid Democracy and Random-Sample Elections, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy, Privacy Challenges for Personal Records dispute resolution, PrecedentCoin: Blockchain Dispute Resolution DIYweathermodeling, Community Supercomputing DNAnexus, Genomecoin, GenomicResearchcoin Dogecoin, Technology Stack: Blockchain, Protocol, Currency, Currency Multiplicity: Monetary and Nonmonetary Currencies, Scandals and Public Perception DotP2P, Challenges and Other Decentralized DNS Services double-spend problem, The Double-Spend and Byzantine Generals’ Computing Problems DriveShare, DAOs and DACs dynamic redistribution of currency (see demurrage currency) E education (see learning and literacy) Electronic Freedom Foundation (EFF), Distributed Censorship-Resistant Organizational Models EMR (electronic medical record) system, EMRs on the Blockchain: Personal Health Record Storage Ethereum, Crowdfunding, Blockchain 2.0 Protocol Projects, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Ethereum: Turing-Complete Virtual Machine-Counterparty Re-creates Ethereum’s Smart Contract Platform eWallet services, eWallet Services and Personal Cryptosecurity ExperimentalResultscoin, Blockchain Academic Publishing: Journalcoin F Fairlay, Bitcoin Prediction Markets fiat currency, Relation to Fiat Currency-Relation to Fiat Currency file serving, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Ethereum: Turing-Complete Virtual Machine file storage, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation financial services, Regulatory Status, Financial Services-Financial Services, Blockchain Technology Is a New and Highly Effective Model for Organizing Activity, Government Regulation Fitbit, Personal Thinking Blockchains, Blockchain Health Research Commons, Extensibility of Demurrage Concept and Features Florincoin, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel Folding@Home, DAOs and DACs, Blockchain Science: Gridcoin, Foldingcoin, Community Supercomputing franculates, Blockchain Government freedom of speech, Namecoin: Decentralized Domain Name System, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel (see also decentralized DNS system) Freicoin, Demurrage Currencies: Potentially Incitory and Redistributable fundraising (see crowdfunding) futarchy, Futarchy: Two-Step Democracy with Voting + Prediction Markets-Futarchy: Two-Step Democracy with Voting + Prediction Markets G GBIcoin, Demurrage Currencies: Potentially Incitory and Redistributable GBIs (Guaranteed Basic Income initiatives), Demurrage Currencies: Potentially Incitory and Redistributable Gems, Blockchain Development Platforms and APIs, Dapps Genecoin, Blockchain Genomics Genomecoin, Genomecoin, GenomicResearchcoin Genomic Data Commons, Genomecoin, GenomicResearchcoin genomic sequencing, Blockchain Genomics 2.0: Industrialized All-Human-Scale Sequencing Solution-Genomecoin, GenomicResearchcoin GenomicResearchcoin, Genomecoin, GenomicResearchcoin genomics, consumer, Blockchain Genomics-Genomecoin, GenomicResearchcoin Git, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation GitHub, Blockchain Academic Publishing: Journalcoin, Currency Multiplicity: Monetary and Nonmonetary Currencies global public health, Global Public Health: Bitcoin for Contagious Disease Relief GoCoin, Financial Services GoToLunchcoin, Terminology and Concepts governance, Blockchain Government-Societal Maturity Impact of Blockchain Governance decentralized services, Decentralized Governance Services-Decentralized Governance Services dispute resolution, PrecedentCoin: Blockchain Dispute Resolution futarchy, Futarchy: Two-Step Democracy with Voting + Prediction Markets-Futarchy: Two-Step Democracy with Voting + Prediction Markets Liquid Democracy system, Liquid Democracy and Random-Sample Elections-Liquid Democracy and Random-Sample Elections personalized governance services, Blockchain Government random-sample elections, Random-Sample Elections societal maturity impact of blockchain governance, Societal Maturity Impact of Blockchain Governance government regulation, Regulatory Status, Government Regulation-Government Regulation Gridcoin, Blockchain Science: Gridcoin, Foldingcoin-Blockchain Science: Gridcoin, Foldingcoin H hashing, Hashing Plus Timestamping-Limitations, Batched Notary Chains as a Class of Blockchain Infrastructure, Technical Challenges Hayek, Friedrich, Communitycoin: Hayek’s Private Currencies Vie for Attention, Demurrage Currencies: Potentially Incitory and Redistributable, Conclusion, The Blockchain Is an Information Technology health, Blockchain Health-Virus Bank, Seed Vault Backup as demurrage currency, Extensibility of Demurrage Concept and Features doctor vendor RFP services, Doctor Vendor RFP Services and Assurance Contracts health notary services, Blockchain Health Notary health research commons , Blockchain Health Research Commons health spending, Healthcoin healthcare decision making and advocacy, Liquid Democracy and Random-Sample Elections personal health record storage, EMRs on the Blockchain: Personal Health Record Storage virus bank and seed vault backup, Virus Bank, Seed Vault Backup Healthcoin, Healthcoin, Demurrage Currencies: Potentially Incitory and Redistributable I identity authentication, eWallet Services and Personal Cryptosecurity, Blockchain 2.0: Contracts, Smart Property, Smart Property, Wallet Development Projects, Digital Identity Verification-Digital Divide of Bitcoin, Limitations, Decentralized Governance Services, Liquid Democracy and Random-Sample Elections, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy, Privacy Challenges for Personal Records Indiegogo, Crowdfunding, Dapps industry scandals, Scandals and Public Perception infrastructure needs and issues, Technical Challenges inheritance gifts, Smart Contracts intellectual property, Monegraph: Online Graphics Protection (see also digital art) Internet administration, Distributed Censorship-Resistant Organizational Models Internet Archive, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Personal Thinking Blockchains Internet censorship prevention (see Decentralized DNS system) Intuit Quickbooks, Merchant Acceptance of Bitcoin IP protection, Hashing Plus Timestamping IPFS project, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation J Johnston, David, Blockchain Technology Could Be Used in the Administration of All Quanta Journalcoin, Blockchain Academic Publishing: Journalcoin Judobaby, Crowdfunding justice applications for censorship-resistant organizational models, Distributed Censorship-Resistant Organizational Models-Distributed Censorship-Resistant Organizational Models digital art, Digital Art: Blockchain Attestation Services (Notary, Intellectual Property Protection)-Personal Thinking Blockchains (see also digital art, blockchain attestation services) digital identity verification, Blockchain 2.0: Contracts, Smart Property, Wallet Development Projects, Digital Identity Verification-Digital Divide of Bitcoin, Limitations, Decentralized Governance Services, Liquid Democracy and Random-Sample Elections, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy, Privacy Challenges for Personal Records freedom of speech/anti-censorship, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel governance, Blockchain Government-Societal Maturity Impact of Blockchain Governance (see also governance) Namecoin, Namecoin: Decentralized Domain Name System-Decentralized DNS Functionality Beyond Free Speech: Digital Identity, Monegraph: Online Graphics Protection (see also decentralized DNS) K Kickstarter, Crowdfunding, Community Supercomputing Kipochi, Blockchain Neutrality, Global Public Health: Bitcoin for Contagious Disease Relief, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy Koinify, Crowdfunding, Dapps Kraken, Financial Services L latency, Blockchain 2.0 Protocol Projects, Technical Challenges, Technical Challenges, Scandals and Public Perception LaZooz, Dapps, Campuscoin, Extensibility of Demurrage Concept and Features Learncoin, Learncoin learning and literacy, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy-Learning Contract Exchanges learning contract exchanges, Learning Contract Exchanges Ledra Capital, Blockchain 2.0: Contracts, Ledra Capital Mega Master Blockchain List legal implications crowdfunding, Crowdfunding smart contracts, Smart Contracts lending, trustless, Smart Property Lighthouse, Crowdfunding limitations, Limitations-Overall: Decentralization Trends Likely to Persist business model challenges, Business Model Challenges government regulation, Government Regulation-Government Regulation personal records privacy challenges, Privacy Challenges for Personal Records scandals and public perception, Scandals and Public Perception-Scandals and Public Perception technical challenges, Technical Challenges-Technical Challenges Liquid Democracy system, Liquid Democracy and Random-Sample Elections-Liquid Democracy and Random-Sample Elections Litecoin, Technology Stack: Blockchain, Protocol, Currency, Technology Stack: Blockchain, Protocol, Currency, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel, Currency Multiplicity: Monetary and Nonmonetary Currencies, Technical Challenges literacy (see learning and literacy) LTBcoin, Wallet Development Projects, Currency, Token, Tokenizing M M2M/IoT infrastructure, M2M/IoT Bitcoin Payment Network to Enable the Machine Economy, Blockchain Development Platforms and APIs, Blockchain Academic Publishing: Journalcoin-The Blockchain Is Not for Every Situation, The Blockchain Is an Information Technology Maidsafe, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Technical Challenges Manna, Crowdfunding marriage, blockchain recorded, Decentralized Governance Services Mastercoin, Blockchain 2.0 Protocol Projects mechanics of cryptocurrencies, How a Cryptocurrency Works Medici, Financial Services mega master blockchain list, Ledra Capital Mega Master Blockchain List-Ledra Capital Mega Master Blockchain List Melotic, Crowdfunding, Wallet Development Projects merchant acceptance, Merchant Acceptance of Bitcoin merchant payment fees, Summary: Blockchain 1.0 in Practical Use messaging, Ethereum: Turing-Complete Virtual Machine, Dapps, Challenges and Other Decentralized DNS Services, Technical Challenges MetaDisk, DAOs and DACs mindfiles, Personal Thinking Blockchains MIT Bitcoin Project, Campuscoin Monegraph, Monegraph: Online Graphics Protection money (see currency) MOOCs (massive open online courses), Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy Moroz, Tatiana, Communitycoin: Hayek’s Private Currencies Vie for Attention multicurrency systems, Demurrage Currencies: Potentially Incitory and Redistributable N Nakamoto, Satoshi, Blockchain 2.0: Contracts, Blockchain 2.0: Contracts Namecoin, Namecoin: Decentralized Domain Name System-Decentralized DNS Functionality Beyond Free Speech: Digital Identity, Monegraph: Online Graphics Protection Nationcoin, Coin Drops as a Strategy for Public Adoption, Demurrage Currencies: Potentially Incitory and Redistributable notary chains, Batched Notary Chains as a Class of Blockchain Infrastructure notary services, Hashing Plus Timestamping, Blockchain Health Notary NSA surveillance, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel NXT, Technology Stack: Blockchain, Protocol, Currency, Blockchain 2.0 Protocol Projects O offline wallets, Technical Challenges OneName, Digital Identity Verification-Digital Identity Verification OneWallet, Wallet Development Projects online graphics protection, Monegraph: Online Graphics Protection-Monegraph: Online Graphics Protection Open Assets, Blockchain 2.0 Protocol Projects Open Transactions, Blockchain 2.0 Protocol Projects OpenBazaar, Dapps, Government Regulation Ostel, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel P passports, Decentralized Governance Services PayPal, The Double-Spend and Byzantine Generals’ Computing Problems, Financial Services, Distributed Censorship-Resistant Organizational Models peer-to-peer lending, Financial Services Peercoin, Technology Stack: Blockchain, Protocol, Currency personal cryptosecurity, eWallet Services and Personal Cryptosecurity personal data rights, Blockchain Genomics personal mindfile blockchains, Personal Thinking Blockchains personal thinking chains, Personal Thinking Blockchains-Personal Thinking Blockchains physical asset keys, Blockchain 2.0: Contracts, Smart Property plagiarism detection/avoidance, Blockchain Academic Publishing: Journalcoin Precedent, PrecedentCoin: Blockchain Dispute Resolution, Terminology and Concepts prediction markets, Bitcoin Prediction Markets, DASs and Self-Bootstrapped Organizations, Decentralized Governance Services, Futarchy: Two-Step Democracy with Voting + Prediction Markets-Futarchy: Two-Step Democracy with Voting + Prediction Markets Predictious, Bitcoin Prediction Markets predictive task automation, Blockchain Layer Could Facilitate Big Data’s Predictive Task Automation privacy challenges, Privacy Challenges for Personal Records private key, eWallet Services and Personal Cryptosecurity Proof of Existence, Proof of Existence-Proof of Existence proof of stake, Blockchain 2.0 Protocol Projects, PrecedentCoin: Blockchain Dispute Resolution, Technical Challenges proof of work, PrecedentCoin: Blockchain Dispute Resolution, Technical Challenges-Technical Challenges property ownership, Smart Property property registration, Decentralized Governance Services public documents registries, Decentralized Governance Services public health, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Global Public Health: Bitcoin for Contagious Disease Relief public perception, Scandals and Public Perception-Scandals and Public Perception public/private key cryptography, Public/Private-Key Cryptography 101-Public/Private-Key Cryptography 101 publishing, academic, Blockchain Academic Publishing: Journalcoin-Blockchain Academic Publishing: Journalcoin pull technology, eWallet Services and Personal Cryptosecurity push technology, eWallet Services and Personal Cryptosecurity R random-sample elections, Random-Sample Elections Realcoin, Relation to Fiat Currency redistribution of currency (see demurrage currency) regulation, Government Regulation-Government Regulation regulatory status, Regulatory Status reputation vouching, Ethereum: Turing-Complete Virtual Machine Researchcoin, Blockchain Academic Publishing: Journalcoin REST APIs, Technical Challenges Ripple, Technology Stack: Blockchain, Protocol, Currency, Relation to Fiat Currency, Blockchain 2.0 Protocol Projects Ripple Labs, Financial Services Roadcoin, Blockchain Government S Saldo.mx, Blockchain Neutrality scandals, Scandals and Public Perception science, Blockchain Science: Gridcoin, Foldingcoin-Charity Donations and the Blockchain—Sean’s Outpost community supercomputing, Community Supercomputing global public health, Global Public Health: Bitcoin for Contagious Disease Relief Sean's Outpost, Charity Donations and the Blockchain—Sean’s Outpost secret messaging, Ethereum: Turing-Complete Virtual Machine security issues, Technical Challenges self-bootstrapped organizations, DASs and Self-Bootstrapped Organizations self-directing assets, Automatic Markets and Tradenets self-enforced code, Smart Property self-sufficiency, Smart Contracts SETI@home, Blockchain Science: Gridcoin, Foldingcoin, Community Supercomputing size and bandwidth, Technical Challenges smart contracts, Smart Contracts-Smart Contracts, Smart Contract Advocates on Behalf of Digital Intelligence automatic markets and tradenets, Automatic Markets and Tradenets Counterparty, Counterparty Re-creates Ethereum’s Smart Contract Platform DAOs/DACs, DAOs and DACs-DAOs and DACs Dapps, Dapps-Dapps DASs, DASs and Self-Bootstrapped Organizations Ethereum, Ethereum: Turing-Complete Virtual Machine increasingly autonomous, Dapps, DAOs, DACs, and DASs: Increasingly Autonomous Smart Contracts-Automatic Markets and Tradenets smart literacy contracts, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy-Learning Contract Exchanges smart property, Smart Property-Smart Property, Monegraph: Online Graphics Protection smartwatch, Extensibility of Demurrage Concept and Features Snowden, Edward, Distributed Censorship-Resistant Organizational Models social contracts, Smart Contracts social network currencies, Currency Multiplicity: Monetary and Nonmonetary Currencies Stellar, Blockchain Development Platforms and APIs stock market, Financial Services Storj, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Dapps, Technical Challenges Stripe, Blockchain Development Platforms and APIs supercomputing, Community Supercomputing Svalbard Global Seed Vault, Virus Bank, Seed Vault Backup Swancoin, Smart Property swaps exchange, Financial Services Swarm, Crowdfunding, Dapps Swarm (Ethereum), Ethereum: Turing-Complete Virtual Machine Swarmops, Crowdfunding T Tatianacoin, Communitycoin: Hayek’s Private Currencies Vie for Attention technical challenges, Technical Challenges-Technical Challenges Tendermint, Technical Challenges Tera Exchange, Financial Services terminology, Terminology and Concepts-Terminology and Concepts 37Coins, Global Public Health: Bitcoin for Contagious Disease Relief throughput, Technical Challenges timestamping, Hashing Plus Timestamping-Limitations titling, Decentralized Governance Services tradenets, Automatic Markets and Tradenets transaction fees, Summary: Blockchain 1.0 in Practical Use Tribecoin, Coin Drops as a Strategy for Public Adoption trustless lending, Smart Property Truthcoin, Futarchy: Two-Step Democracy with Voting + Prediction Markets Turing completeness, Ethereum: Turing-Complete Virtual Machine Twister, Dapps Twitter, Monegraph: Online Graphics Protection U Uber, Government Regulation unbanked/underbanked markets, Blockchain Neutrality usability issues, Technical Challenges V value chain composition, How a Cryptocurrency Works versioning issues, Technical Challenges Virtual Notary, Virtual Notary, Bitnotar, and Chronobit voting and prediction, Futarchy: Two-Step Democracy with Voting + Prediction Markets-Futarchy: Two-Step Democracy with Voting + Prediction Markets W wallet APIs, Blockchain Development Platforms and APIs wallet companies, Wallet Development Projects wallet software, How a Cryptocurrency Works wasted resources, Technical Challenges Wayback Machine, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation Wedbush Securities, Financial Services Whatevercoin, Terminology and Concepts WikiLeaks, Distributed Censorship-Resistant Organizational Models Wikinomics, Community Supercomputing World Citizen project, Decentralized Governance Services X Xapo, eWallet Services and Personal Cryptosecurity Z Zennet Supercomputer, Community Supercomputing Zooko's Triangle, Decentralized DNS Functionality Beyond Free Speech: Digital Identity About the Author Melanie Swan is the Founder of the Institute for Blockchain Studies and a Contemporary Philosophy MA candidate at Kingston University London and Université Paris VIII.

Blockchain 2.0: Contracts Financial Services Crowdfunding Bitcoin Prediction Markets Smart Property Smart Contracts Blockchain 2.0 Protocol Projects Wallet Development Projects Blockchain Development Platforms and APIs Blockchain Ecosystem: Decentralized Storage, Communication, and Computation Ethereum: Turing-Complete Virtual Machine Counterparty Re-creates Ethereum’s Smart Contract Platform Dapps, DAOs, DACs, and DASs: Increasingly Autonomous Smart Contracts Dapps DAOs and DACs DASs and Self-Bootstrapped Organizations Automatic Markets and Tradenets The Blockchain as a Path to Artificial Intelligence 3. Blockchain 3.0: Justice Applications Beyond Currency, Economics, and Markets Blockchain Technology Is a New and Highly Effective Model for Organizing Activity Extensibility of Blockchain Technology Concepts Fundamental Economic Principles: Discovery, Value Attribution, and Exchange Blockchain Technology Could Be Used in the Administration of All Quanta Blockchain Layer Could Facilitate Big Data’s Predictive Task Automation Distributed Censorship-Resistant Organizational Models Namecoin: Decentralized Domain Name System Challenges and Other Decentralized DNS Services Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel Decentralized DNS Functionality Beyond Free Speech: Digital Identity Digital Identity Verification Blockchain Neutrality Digital Divide of Bitcoin Digital Art: Blockchain Attestation Services (Notary, Intellectual Property Protection) Hashing Plus Timestamping Proof of Existence Virtual Notary, Bitnotar, and Chronobit Monegraph: Online Graphics Protection Digital Asset Proof as an Automated Feature Batched Notary Chains as a Class of Blockchain Infrastructure Personal Thinking Blockchains Blockchain Government Decentralized Governance Services PrecedentCoin: Blockchain Dispute Resolution Liquid Democracy and Random-Sample Elections Random-Sample Elections Futarchy: Two-Step Democracy with Voting + Prediction Markets Societal Maturity Impact of Blockchain Governance 4.


pages: 161 words: 44,488

The Business Blockchain: Promise, Practice, and Application of the Next Internet Technology by William Mougayar

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Airbnb, airport security, Albert Einstein, altcoin, Amazon Web Services, bitcoin, Black Swan, blockchain, business process, centralized clearinghouse, Clayton Christensen, cloud computing, cryptocurrency, disintermediation, distributed ledger, Edward Snowden, en.wikipedia.org, ethereum blockchain, fault tolerance, fiat currency, fixed income, global value chain, Innovator's Dilemma, Internet of things, Kevin Kelly, Kickstarter, market clearing, Network effects, new economy, peer-to-peer, peer-to-peer lending, prediction markets, pull request, QR code, ride hailing / ride sharing, Satoshi Nakamoto, sharing economy, smart contracts, social web, software as a service, too big to fail, Turing complete, web application

That is how public blockchains grow. Bitcoin was that first public blockchain, and it inspired many others. Ethereum was another major public blockchain that has grown rapidly to establish itself as the second largest and significant public, multi-purpose blockchain. One of the primary differences between a public and private blockchain is that public blockchains typically have a generic purpose and are generally cheaper to use, whereas private blockchains have a more specific usage, and they are more expensive to set up because the cost is born by fewer owners. We can also expect special purpose public blockchains to emerge, for example, the Zcash one that promises to deliver total privacy. With the proliferation of public, private, semi-private, special purpose, and other types of blockchains, a world of millions of blockchains will be achievable.

He looked at it for three seconds, got agitated, opened Inkscape on his Windows PC, and frenetically started drawing the first version of a blockchain-based architectural framework with Ethereum in it. That architecture drawing was later iterated upon, and appeared in one of Vitalik's blog posts, titled “On Silos.”2 Over the next several months, and up to this day, we became reverse mentors. He taught me a lot about blockchains, and I advised him on business matters and growing Ethereum. I may never comprehend a fraction of Vitalik's blockchain dreams on a given night, but one thing I am certain about, is that Vitalik Buterin is emerging as a savvy business person, following the ranks of other bright technologists, while continuing to lead the Ethereum core technology and its Foundation. I proceeded to write 50 blog posts on Bitcoin, blockchains, and Ethereum, and immersed myself with global creators, innovators, pioneers, leaders, entrepreneurs, startups, enterprise executives and practitioners who were at the leading edges of blockchain technology and its implementation.

“Bitnation and Estonian Government Start Spreading Sovereign Jurisdiction on the Blockchain," IB Times, Ian Allison, http://www.ibtimes.co.uk/bitnation-estonian-government-start-spreading-sovereign-jurisdiction-blockchain-1530923, November 2015. 5. “Ukraine Government Plans to Trial Ethereum Blockchain-Based Election Platform," Bitcoin Magazine, https://bitcoinmagazine.com/articles/ukraine-government-plans-to-trial-ethereum-blockchain-based-election-platform-1455641691, February 2016. 6. BoardRoom, http://boardroom.to/. 7. Otonomos, otonomos.com. 8. List of countries by Fragile States Index, Wikipedia, https://en.wikipedia.org/wiki/List_of_countries_by_Fragile_States_Index. 9. “Guartime Secures over a Million Estonian Healthcare Records on the Blockchain," Ian Allison, IB Times, http://www.ibtimes.co.uk/guardtime-secures-over-million-estonian-healthcare-records-blockchain-1547367, March 2016. 10. “Blockchain in Healthcare: From Theory to Reality," Jonathan Cordwell, http://blogs.csc.com/2015/10/30/blockchain-in-healthcare-from-theory-to-reality/. 11.


pages: 515 words: 126,820

Blockchain Revolution: How the Technology Behind Bitcoin Is Changing Money, Business, and the World by Don Tapscott, Alex Tapscott

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Airbnb, altcoin, asset-backed security, autonomous vehicles, barriers to entry, bitcoin, blockchain, Bretton Woods, business process, Capital in the Twenty-First Century by Thomas Piketty, carbon footprint, clean water, cloud computing, cognitive dissonance, commoditize, corporate governance, corporate social responsibility, creative destruction, Credit Default Swap, crowdsourcing, cryptocurrency, disintermediation, distributed ledger, Donald Trump, double entry bookkeeping, Edward Snowden, Elon Musk, Erik Brynjolfsson, ethereum blockchain, failed state, fiat currency, financial innovation, Firefox, first square of the chessboard, first square of the chessboard / second half of the chessboard, future of work, Galaxy Zoo, George Gilder, glass ceiling, Google bus, Hernando de Soto, income inequality, informal economy, information asymmetry, intangible asset, interest rate swap, Internet of things, Jeff Bezos, jimmy wales, Kickstarter, knowledge worker, Kodak vs Instagram, Lean Startup, litecoin, Lyft, M-Pesa, Marc Andreessen, Mark Zuckerberg, Marshall McLuhan, means of production, microcredit, mobile money, money market fund, Network effects, new economy, Oculus Rift, off grid, pattern recognition, peer-to-peer, peer-to-peer lending, peer-to-peer model, performance metric, Peter Thiel, planetary scale, Ponzi scheme, prediction markets, price mechanism, Productivity paradox, QR code, quantitative easing, ransomware, Ray Kurzweil, renewable energy credits, rent-seeking, ride hailing / ride sharing, Ronald Coase, Ronald Reagan, Satoshi Nakamoto, Second Machine Age, seigniorage, self-driving car, sharing economy, Silicon Valley, Skype, smart contracts, smart grid, social graph, social software, Stephen Hawking, Steve Jobs, Steve Wozniak, Stewart Brand, supply-chain management, TaskRabbit, The Fortune at the Bottom of the Pyramid, The Nature of the Firm, The Wisdom of Crowds, transaction costs, Turing complete, Turing test, Uber and Lyft, unbanked and underbanked, underbanked, unorthodox policies, wealth creators, X Prize, Y2K, Zipcar

CHAPTER 4 RE-ARCHITECTING THE FIRM: THE CORE AND THE EDGES BUILDING CONSENSYS July 30, 2015, was a big day for a global group of coders, investors, entrepreneurs, and corporate strategists who think that Ethereum is the next big thing—not just for business, but possibly for civilization. Ethereum, the blockchain platform eighteen months in the making, went live. We witnessed the launch firsthand in the Brooklyn office of Consensus Systems (ConsenSys), one of the first Ethereum software development companies. Around 11:45 a.m., there were high fives all around as the Ethereum network created its “genesis block,” after which a frenzy of miners raced to win the first block of ether, Ethereum’s currency. The day was eerily suspenseful. A massive thunderstorm broke over the East River, triggering loud and random emergency flood warnings on everyone’s smart phones. According to its Web site, Ethereum is a platform that runs decentralized applications, namely smart contracts, “exactly as programmed without any possibility of downtime, censorship, fraud, or third party interference.”

None of these companies existed a decade ago because the technological preconditions were not there: ubiquitous smart phones, full GPS, and sophisticated payment systems. Now with blockchains, the technology exists to reinvent these industries again. Today’s big disrupters are about to get disrupted. Imagine instead of the centralized company Airbnb, a distributed application—call it blockchain Airbnb or bAirbnb—essentially a cooperative owned by its members. When a renter wants to find a listing, the bAirbnb software scans the blockchain for all the listings and filters and displays those that meet her criteria. Because the network creates a record of the transaction on the blockchain, a positive user review improves their respective reputations and establishes their identities—now without an intermediary. Says Vitalik Buterin, founder of the Ethereum blockchain: “Whereas most technologies tend to automate workers on the periphery doing menial tasks, blockchains automate away the center.

Jumpstart Our Business Startups Act allows small investors to make direct investments in crowdfunding campaigns, but investors and entrepreneurs still need intermediaries such as Kickstarter or Indiegogo, and a conventional payment method, typically credit cards and PayPal, to participate. The intermediary is the ultimate arbiter of everything, including who owns what. The blockchain IPO takes the concept further. Now, companies can raise funds “on the blockchain” by issuing tokens, or cryptosecurities, of some value in the company. They can represent equity, bonds, or, in the case of Augur, market-maker seats on the platform, granting owners the right to decide which prediction markets the company will open. Ethereum was an even greater success than Augur, funding the development of a whole new blockchain through a crowd sale of its native token, ether. Today Ethereum is the second-longest and fastest-growing public blockchain. The average investment in the Augur crowdfunding was $750, but one can easily imagine minimum subscriptions of a dollar or even ten cents.


pages: 410 words: 119,823

Radical Technologies: The Design of Everyday Life by Adam Greenfield

3D printing, Airbnb, augmented reality, autonomous vehicles, bank run, barriers to entry, basic income, bitcoin, blockchain, business intelligence, business process, call centre, cellular automata, centralized clearinghouse, centre right, Chuck Templeton: OpenTable, cloud computing, collective bargaining, combinatorial explosion, Computer Numeric Control, computer vision, Conway's Game of Life, cryptocurrency, David Graeber, dematerialisation, digital map, distributed ledger, drone strike, Elon Musk, ethereum blockchain, facts on the ground, fiat currency, global supply chain, global village, Google Glasses, IBM and the Holocaust, industrial robot, informal economy, information retrieval, Internet of things, James Watt: steam engine, Jane Jacobs, Jeff Bezos, job automation, John Conway, John Markoff, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, John von Neumann, joint-stock company, Kevin Kelly, Kickstarter, late capitalism, license plate recognition, lifelogging, M-Pesa, Mark Zuckerberg, means of production, megacity, megastructure, minimum viable product, money: store of value / unit of account / medium of exchange, natural language processing, Network effects, New Urbanism, Occupy movement, Oculus Rift, Pareto efficiency, pattern recognition, Pearl River Delta, performance metric, Peter Eisenman, Peter Thiel, planetary scale, Ponzi scheme, post scarcity, RAND corporation, recommendation engine, RFID, rolodex, Satoshi Nakamoto, self-driving car, sentiment analysis, shareholder value, sharing economy, Silicon Valley, smart cities, smart contracts, sorting algorithm, special economic zone, speech recognition, stakhanovite, statistical model, stem cell, technoutopianism, Tesla Model S, the built environment, The Death and Life of Great American Cities, The Future of Employment, transaction costs, Uber for X, universal basic income, urban planning, urban sprawl, Whole Earth Review, WikiLeaks, women in the workforce

And just as the form of a Bitcoin transaction is identical with its content, the terms of a smart contract are articulated unambiguously, in the same code that governs its execution. There is a precise, 1:1 relationship between what it specifies and what it actually does, and those specifications can be retrieved from the blockchain for reference at any time. If the atomic unit of the Bitcoin blockchain is transactions, then, that of the Ethereum blockchain is contracts. This “simplest form of decentralized automation” is key to everything else Ethereum does or proposes to do. Armed with this mechanism, it is capable of binding previously unaffiliated peers in a meshwork of obligation, whether those peers are human, organizational or machinic. As clever as the notion of a smart contract is, it in turn remains subject to real drawbacks.

The successful launch of a framework called Ethereum just a few months later would demote “the” (implicitly Bitcoin) blockchain to merely “a” blockchain, just one alternative among many. While there has been a groundswell of competing initiatives in the post- or para-Bitcoin space, with cryptic names like Juno and Sawtooth Lake, I have chosen to center the discussion that follows on Ethereum. It remains preeminent among these second-generation blockchain efforts, is now rapidly approaching the size of the Bitcoin network, and seems likely to remain salient when other streams of activity have dried up or come to nothing.2 More importantly, though, Buterin and the substantial community he has attracted to his initiative have generated most of the domain’s fundamentally new ideas, and have otherwise proven adept at translating those already in circulation into their own highly particular idiom.

Its protean quality can sometimes obscure just what it is that Ethereum promises to bring to the table. Is it best understood as an alternative to the Bitcoin blockchain, a flexible, powerful, general-purpose distributed computing infrastructure, or an environment for running applications that cannot be easily suppressed? The straightforward answer is that it aims to be all of these things, all at once, and its development team has demonstrated at least some progress toward each goal. But however much one or another of these propositions might appeal to some pie-slice of its target audience, none of them is quite as compelling to the community gathered around Ethereum as its power to act conditionally. This ability to trigger events should certain contingencies arise is something the Bitcoin blockchain could not do, and Buterin had designed it into his creation from the start.


pages: 296 words: 86,610

The Bitcoin Guidebook: How to Obtain, Invest, and Spend the World's First Decentralized Cryptocurrency by Ian Demartino

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, AltaVista, altcoin, bitcoin, blockchain, buy low sell high, capital controls, cloud computing, corporate governance, crowdsourcing, cryptocurrency, distributed ledger, Edward Snowden, Elon Musk, ethereum blockchain, fiat currency, Firefox, forensic accounting, global village, GnuPG, Google Earth, Haight Ashbury, Jacob Appelbaum, Kevin Kelly, Kickstarter, litecoin, M-Pesa, Marc Andreessen, Marshall McLuhan, Oculus Rift, peer-to-peer, peer-to-peer lending, Ponzi scheme, prediction markets, QR code, ransomware, Satoshi Nakamoto, self-driving car, Skype, smart contracts, Steven Levy, the medium is the message, underbanked, WikiLeaks, Zimmermann PGP

The main idea behind these projects is that the blockchain and blockchain technologies can be used to transfer and keep track of holdings of valuables other than Bitcoin or other digital currencies. Even if a 2.0 project is not built off of Bitcoin, like Ethereum, increased investment and interest in cryptocurrencies as a whole tend to increase Bitcoin’s value as well. Since Bitcoin is currently the most successful, secure, and popular cryptocurrency, any increased interest in cryptocurrencies as a whole has a positive effect on Bitcoin’s price. The first example of a “2.0” cryptocurrency was Namecoin, which, in addition to being a currency, acted as a distributed domain name registrar free from the control of any government, individual or group. Users need to download the Namecoin blockchain in order to view sites registered using the Namecoin protocol.

Before you can fund your business or product with cryptocurrencies, you need to know what services are available and how successful other such projects have been. There are four major platforms you can use to issue your own token that represents a small amount of ownership of your company: Counterparty, Omni/Mastercoin, Ethereum, and Nxt. There are others but they are either still in development or are a part of a small community and would limit the number of your potential investors. Counterparty is built on the Bitcoin blockchain so your potential pool of investors includes everyone who uses Bitcoin. Nxt, on the other hand, has its own technology and community, which is significantly smaller than Bitcoin’s. However, Nxt’s asset exchange—its name for its token marketplace—is built right into its core client, while Counterparty requires a special wallet.

However, Nxt’s asset exchange—its name for its token marketplace—is built right into its core client, while Counterparty requires a special wallet. Essentially, Counterparty gives you immediate access to a subset of the Bitcoin community while offering the potential to reach the rest of them, while Nxt gives you access to its entire community from the start, albeit one that is much smaller overall. Omni/Mastercoin is an asset platform built on top of the Bitcoin blockchain. As with other cryptocurrency 2.0 projects, it allows for the creation, sale and trading of assets. Ethereum recently launched and is becoming more accessible every day. It, too, can be used to fund a business but can additionally incorporate extra programming to create interesting projects. This is best left to those with experience, however. Issuing an asset that offers some sort of reward to buyers essentially works the same on any platform.


pages: 457 words: 128,838

The Age of Cryptocurrency: How Bitcoin and Digital Money Are Challenging the Global Economic Order by Paul Vigna, Michael J. Casey

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, Airbnb, altcoin, bank run, banking crisis, bitcoin, blockchain, Bretton Woods, California gold rush, capital controls, carbon footprint, clean water, collaborative economy, collapse of Lehman Brothers, Columbine, Credit Default Swap, cryptocurrency, David Graeber, disintermediation, Edward Snowden, Elon Musk, ethereum blockchain, fiat currency, financial innovation, Firefox, Flash crash, Fractional reserve banking, hacker house, Hernando de Soto, high net worth, informal economy, intangible asset, Internet of things, inventory management, Julian Assange, Kickstarter, Kuwabatake Sanjuro: assassination market, litecoin, Long Term Capital Management, Lyft, M-Pesa, Marc Andreessen, Mark Zuckerberg, McMansion, means of production, Menlo Park, mobile money, money: store of value / unit of account / medium of exchange, Network effects, new economy, new new economy, Nixon shock, offshore financial centre, payday loans, Pearl River Delta, peer-to-peer, peer-to-peer lending, pets.com, Ponzi scheme, prediction markets, price stability, profit motive, QR code, RAND corporation, regulatory arbitrage, rent-seeking, reserve currency, Robert Shiller, Robert Shiller, Satoshi Nakamoto, seigniorage, shareholder value, sharing economy, short selling, Silicon Valley, Silicon Valley startup, Skype, smart contracts, special drawing rights, Spread Networks laid a new fibre optics cable between New York and Chicago, Steve Jobs, supply-chain management, Ted Nelson, The Great Moderation, the market place, the payments system, The Wealth of Nations by Adam Smith, too big to fail, transaction costs, tulip mania, Turing complete, Tyler Cowen: Great Stagnation, Uber and Lyft, underbanked, WikiLeaks, Y Combinator, Y2K, zero-sum game, Zimmermann PGP

But the energy and innovative brainpower being invested in them is significant and is manifest in a string of serious start-ups and development projects. The pioneer in the field was the Colored Coins project, which launched in the second half of 2012; its purpose: to allow people to exchange digitized securities and fiat currencies directly over the bitcoin blockchain. (Two people could set up a contract to directly exchange a digital claim on euros for a digital claim on gold, for example.) Since then the field has become crowded with Blockchain 2.0 start-ups and projects, including Next, Ripple, Mastercoin, Ethereum, BitShares, Counterparty, and Stellar. Each provides a specially designed blockchain-based platform that allows other entities to create peer-to-peer contracts, to issue and permit trading of digital and digitized assets, or to install special software-driven applications, all of them with decentralized functioning.

In theory, the blockchain’s groundbreaking model for authenticating information could liberate the poor from the incompetence and corruption of bureaucrats and judges. Digitized registers of real-estate deeds, all fully administered by a cryptocurrency computer network without the engagement of a central government agency, could be created to cheaply and reliably manage people’s rights to property, administering digital documents that could be used to obtain loans in digital or fiat currency. Whereas judicial corruption means that low-income people in a developing country can’t rely on watertight contracts to shore up their businesses and unlock de Soto’s mystery of capital, subjecting such agreements to the infallibility of the blockchain could end all that. Jonathan Mohan, who works at Ethereum, the new Bitcoin 2.0 platform that’s seeking to disrupt all sorts of legal and contractual arrangements, offers a compelling explanation for how these “smart contracts,” each designed to be executed on the blockchain via an automated piece of software, would benefit the informal economy.

He was essentially saying it was like DOS, before Windows was created. What if he built an entirely independent protocol and blockchain that could sustain any kind of application written in any programming language, one that was, as developers say, “Turing complete”? What if it could support any decentralized service—currency-trading systems, smart contracts, shareholder registrations, voting systems, DApps, DACs, DAOs, whatever—and let developers construct as pretty an interface as they felt their market needed? The solution he came up with quickly took the cryptocurrency world by storm: a completely redesigned, fully versatile, decentralized blockchain that could function as an open platform on which all manner of contracts and decentralized applications could be installed. He called it Ethereum. “We are hoping to be like the Android of cryptocurrency,” Buterin says, referring to the Google-designed mobile operating system that’s used by multiple models of smartphones and which had by 2014 inspired more than a million apps.


pages: 472 words: 117,093

Machine, Platform, Crowd: Harnessing Our Digital Future by Andrew McAfee, Erik Brynjolfsson

3D printing, additive manufacturing, AI winter, Airbnb, airline deregulation, airport security, Albert Einstein, Amazon Mechanical Turk, Amazon Web Services, artificial general intelligence, augmented reality, autonomous vehicles, backtesting, barriers to entry, bitcoin, blockchain, book scanning, British Empire, business process, carbon footprint, Cass Sunstein, centralized clearinghouse, Chris Urmson, cloud computing, cognitive bias, commoditize, complexity theory, computer age, creative destruction, crony capitalism, crowdsourcing, cryptocurrency, Daniel Kahneman / Amos Tversky, Dean Kamen, discovery of DNA, disintermediation, distributed ledger, double helix, Elon Musk, en.wikipedia.org, Erik Brynjolfsson, ethereum blockchain, everywhere but in the productivity statistics, family office, fiat currency, financial innovation, George Akerlof, global supply chain, Hernando de Soto, hive mind, information asymmetry, Internet of things, inventory management, iterative process, Jean Tirole, Jeff Bezos, jimmy wales, John Markoff, joint-stock company, Joseph Schumpeter, Kickstarter, law of one price, Lyft, Machine translation of "The spirit is willing, but the flesh is weak." to Russian and back, Marc Andreessen, Mark Zuckerberg, meta analysis, meta-analysis, moral hazard, multi-sided market, Myron Scholes, natural language processing, Network effects, new economy, Norbert Wiener, Oculus Rift, PageRank, pattern recognition, peer-to-peer lending, performance metric, Plutocrats, plutocrats, precision agriculture, prediction markets, pre–internet, price stability, principal–agent problem, Ray Kurzweil, Renaissance Technologies, Richard Stallman, ride hailing / ride sharing, risk tolerance, Ronald Coase, Satoshi Nakamoto, Second Machine Age, self-driving car, sharing economy, Silicon Valley, Skype, slashdot, smart contracts, Snapchat, speech recognition, statistical model, Steve Ballmer, Steve Jobs, Steven Pinker, supply-chain management, TaskRabbit, Ted Nelson, The Market for Lemons, The Nature of the Firm, Thomas L Friedman, too big to fail, transaction costs, transportation-network company, traveling salesman, two-sided market, Uber and Lyft, Uber for X, Watson beat the top human players on Jeopardy!, winner-take-all economy, yield management, zero day

They were instead about the vulnerabilities of cryptocurrencies and smart contracts revealed by the exploit. The Nakamoto Institute’s withering assessment was that Ethereum was “doomed.” Its combination of poor programming and terms of use that essentially made this lousy programming legally binding spelled disaster. Believers in the dream of decentralizing all the things, however, weren’t yet ready to give up. In July of 2016, Vitalik Buterin, one of Ethereum’s cofounders and the author (at nineteen years old) of the influential 2013 “Ethereum White Paper,” announced a “hard fork” in the cryptocurrency and its blockchain. If a majority of participants in The DAO accepted this fork (which was embodied in a new version of the Ethereum software), all previous transactions that occurred within the decentralized autonomous organization would be essentially forgotten, and all involved ethers would be returned to their original owners.

As we write this in early 2017, Ethereum and Ethereum Classic continue to exist in parallel. Bitcoin’s Bitter End? Despite ample worldwide enthusiasm for them, Bitcoin and the blockchain have also experienced trouble. In January of 2016 Mike Hearn, who had been a prolific and respected contributor to programming for the blockchain, and who had believed in its promise so deeply that he had quit his job at Google to devote himself full-time to it, sold all his Bitcoins and walked away from the project. The blog post he wrote explaining his decision was titled “The Resolution of the Bitcoin Experiment.” In Hearn’s view this resolution was failure. And the failure occurred not because of intractable problems with mining or newly discovered vulnerabilities of the cryptocurrency itself, but instead for organizational reasons.

The Failure Modes of Decentralized Things These insights help us understand the recent problems of Bitcoin, the blockchain, Ethereum, and The DAO discussed earlier in this chapter. The blockchain was designed from the start to be as decentralized and uncontrollable as possible; it was meant to be the ultimate antihierarchy. But then, what recourse is available to its enthusiasts if it evolves in a direction they don’t like—if, for example, it begins to operate more and more behind the great firewall of China? This is in many ways the opposite of the original vision for the cryptocurrency and its distributed ledger. But it’s also virtually impossible for the original Bitcoin enthusiasts to change or undo—about as hard as it would be for a small group of traders to change the trend of an entire stock market. It’s bad enough that Bitcoin and blockchain programmers have split into two adversarial camps without any single authority (either a formal or an informal one) to make final decisions.


The Blockchain Alternative: Rethinking Macroeconomic Policy and Economic Theory by Kariappa Bheemaiah

accounting loophole / creative accounting, Ada Lovelace, Airbnb, algorithmic trading, asset allocation, autonomous vehicles, balance sheet recession, bank run, banks create money, Basel III, basic income, Ben Bernanke: helicopter money, bitcoin, blockchain, Bretton Woods, business process, call centre, capital controls, Capital in the Twenty-First Century by Thomas Piketty, cashless society, cellular automata, central bank independence, Claude Shannon: information theory, cloud computing, cognitive dissonance, collateralized debt obligation, commoditize, complexity theory, constrained optimization, corporate governance, creative destruction, credit crunch, Credit Default Swap, credit default swaps / collateralized debt obligations, crowdsourcing, cryptocurrency, David Graeber, deskilling, Diane Coyle, discrete time, distributed ledger, diversification, double entry bookkeeping, ethereum blockchain, fiat currency, financial innovation, financial intermediation, Flash crash, floating exchange rates, Fractional reserve banking, full employment, George Akerlof, illegal immigration, income inequality, income per capita, inflation targeting, information asymmetry, interest rate derivative, inventory management, invisible hand, John Maynard Keynes: technological unemployment, John von Neumann, joint-stock company, Joseph Schumpeter, Kenneth Arrow, Kenneth Rogoff, Kevin Kelly, knowledge economy, labour market flexibility, large denomination, liquidity trap, London Whale, low skilled workers, M-Pesa, Marc Andreessen, market bubble, market fundamentalism, Mexican peso crisis / tequila crisis, money market fund, money: store of value / unit of account / medium of exchange, mortgage debt, natural language processing, Network effects, new economy, Nikolai Kondratiev, offshore financial centre, packet switching, Pareto efficiency, pattern recognition, peer-to-peer lending, Ponzi scheme, precariat, pre–internet, price mechanism, price stability, private sector deleveraging, profit maximization, QR code, quantitative easing, quantitative trading / quantitative finance, Ray Kurzweil, Real Time Gross Settlement, rent control, rent-seeking, Satoshi Nakamoto, Satyajit Das, savings glut, seigniorage, Silicon Valley, Skype, smart contracts, software as a service, software is eating the world, speech recognition, statistical model, Stephen Hawking, supply-chain management, technology bubble, The Chicago School, The Future of Employment, The Great Moderation, the market place, The Nature of the Firm, the payments system, the scientific method, The Wealth of Nations by Adam Smith, Thomas Kuhn: the structure of scientific revolutions, too big to fail, trade liberalization, transaction costs, Turing machine, Turing test, universal basic income, Von Neumann architecture, Washington Consensus

A smart contract, according to Ethereum’s founder, Vitalik Buterin, “is a computer program that directly controls some digital asset.” Smart Contracts are essentially the same as Apps, except they perform a different kind of automation. While the traditional Apps available on a Google Play Store or Apple App Store are useful for certain operations, Smart Contracts function as Apps that perform value exchange operations when they receive a certain input. Just as the blockchain is a digitally native protocol that is designed for value exchange, Smart Contracts are native to the Blockchain and perform value exchange operations based on the input signals that they receive from the Blockchain. This is currently one of the explosive areas of innovation and protocols developed by platforms like Ethereum are allowing the large scale deployment of Smart Contracts.

Some suggest that a centralized identity management system is the way forward, while others extol the virtues of leveraging the existing decentralized morsels of identity. Gavin Wood is widely known in the Blockchain community as the Co-founder and CTO of Ethereum and the Co-founder of Grid Singularity (a company that uses the Blockchain for decentralized energy data management) 24 67 Chapter 2 ■ Fragmentation of Finance Table 2-2. Private companies that are providing identity and KYC/AML services via the Blockchain Company Service Solution 2WAY.IO Identity 2WAY.IO transforms public nodes into private nodes by adding a permission layer and connects information silos and secure communication channels. They offer systems that are privacy-by-design and security-by-design that are both trusted third-party- and blockchain-agnostic. ShoCard Identity and ShoCard is a digital identity that protects consumer KYC privacy.

As the Blockchain also offers a tamperproof way of storing records, it could ease the process required to know a customer and reduce the number of “suspicious” transactions, resulting in $3–$5 billion in cost savings for KYC (Know Your Customer) and AML (Anti-Money Laundering) compliance (Schneider et al., 2016). As P2P platforms begin to the change the role of the consumer into a prosumer, the growth of business models that do not have to depend on a central point of authority is gaining stead. As the Blockchain is suited to this environment and is digitally native, its continued use in various forms is bound to increase. While the current total worth of bitcoin in the Blockchain is around $20 billion, the growing popularity and use of Ethereum23 and Ripple is tipping the scale, and the World Economic Forum estimates that by 2027, up to 10% of the global GDP will be stored on the Blockchain (WEF, 2015). Some skeptics still stubbornly state that, owing to regulatory and operational limitations, this technology will remain on the fringes of finance and exist as just a cryptocurrency. But the evidence shows that it is much more.


pages: 200 words: 47,378

The Internet of Money by Andreas M. Antonopoulos

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

AltaVista, altcoin, bitcoin, blockchain, clean water, cognitive dissonance, cryptocurrency, ethereum blockchain, financial exclusion, global reserve currency, litecoin, London Interbank Offered Rate, Marc Andreessen, Oculus Rift, packet switching, peer-to-peer lending, Ponzi scheme, QR code, ransomware, reserve currency, Satoshi Nakamoto, self-driving car, Skype, smart contracts, the medium is the message, trade route, underbanked, WikiLeaks, zero-sum game

To most people, the fact that I’m showing them the bottom of the range of expression simply reinforces the idea that this is a cheap and vulgar medium. What they fail to grasp is that this medium is not just for the trivial; it spans the entire range of transactional expression from the trivial to the enormous. "The blockchain can encompass the entire range of transactional expression, from the 10-cent tweet to the $100 billion debt settlement." One day, a country will pay its oil bill on the blockchain. One day, you might buy a multinational company on the blockchain. One day, you might sell an aircraft carrier, hopefully for scrap metal, on the blockchain. The blockchain can encompass the entire range, from the 10-cent tweet to the $100 billion debt settlement. We just haven’t noticed yet. It can do so without any constraint imposed by the underlying medium. This isn’t just a matter of the fact that the transaction as a content type can be transported over Skype smileys.

Currency as a Language Bitcoin Expo 2014 - Keynote; Toronto, Ontario, Canada; April 2014 Video Link: https://www.youtube.com/watch?v=jw28y81s7Wo This is going to be a bit more of a philosophical talk about the future of cryptocurrencies and what I’ve learned here at this event. This event is called the Bitcoin Expo 2014. It might have been called the Bitcoin and Ethereum Expo 2014. I don’t know if you noticed, but Ethereum had a pretty big presence here. An interesting question comes up, actually quite a few people have asked me: "Does Ethereum threaten the future of bitcoin? Does it steal some of its thunder?" Those are questions I’ve heard several times, and I’ve heard people refer to that issue in trying to understand altcoins - wondering whether altcoins essentially threaten the dominance of bitcoin, if they make bitcoin weaker, if they distribute the value of the network too broadly. 7.1.

I want to sit at my kitchen table every Sunday and balance my checkbook and make sure none of my checks bounced. I don’t like all of this electronic instantaneous global transfer. It scares me,” we can slow it down. This infrastructure inversion will allow us to comfortably run traditional banking applications on top of a distributed global ledger — an open blockchain like bitcoin, the open blockchain, probably bitcoin’s open blockchain and simultaneously open the door for other applications, for applications we’ve never seen before. These new applications will look different from traditional banking. As different as a Segway or skateboard looks to those committed to traditional horse-carriages. As different as moving to electricity in an era of gas lighting in traditional Victorian homes. As alien as comfort noise on high quality data voice communication over the internet that is capable of so much more.


pages: 375 words: 88,306

The Sharing Economy: The End of Employment and the Rise of Crowd-Based Capitalism by Arun Sundararajan

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, additive manufacturing, Airbnb, Amazon Mechanical Turk, autonomous vehicles, barriers to entry, basic income, bitcoin, blockchain, Burning Man, call centre, collaborative consumption, collaborative economy, collective bargaining, commoditize, corporate social responsibility, cryptocurrency, David Graeber, distributed ledger, employer provided health coverage, Erik Brynjolfsson, ethereum blockchain, Frank Levy and Richard Murnane: The New Division of Labor, future of work, George Akerlof, gig economy, housing crisis, Howard Rheingold, information asymmetry, Internet of things, inventory management, invisible hand, job automation, job-hopping, Kickstarter, knowledge worker, Kula ring, Lyft, Marc Andreessen, megacity, minimum wage unemployment, moral hazard, moral panic, Network effects, new economy, Oculus Rift, pattern recognition, peer-to-peer, peer-to-peer lending, peer-to-peer model, peer-to-peer rental, profit motive, purchasing power parity, race to the bottom, recommendation engine, regulatory arbitrage, rent control, Richard Florida, ride hailing / ride sharing, Robert Gordon, Ronald Coase, Second Machine Age, self-driving car, sharing economy, Silicon Valley, smart contracts, Snapchat, social software, supply-chain management, TaskRabbit, The Nature of the Firm, total factor productivity, transaction costs, transportation-network company, two-sided market, Uber and Lyft, Uber for X, universal basic income, Zipcar

Dionysis Zindros, “A Pseudonymous Trust System for a Decentralized Anonymous Marketplace,” GitHub Gist, 2015, https://gist.github.com/dionyziz/e3b296861175e0ebea4b. 11. Melanie Swan, Blockchain: Blueprint for a New Economy (Sebastopol, CA: O’Reilly Media, Inc., 2015). 12. Primavera De Fillipi, “Ethereum: Freenet or Skynet?,” Talk presented at the Berkman Center for Internet & Society, Harvard University, Cambridge, MA, April 15, 2014. 13. Lawrence Lessig, Code and Other Laws of Cyberspace (New York: Basic Books, 1999). 14. Vitalik Buterin, “Decentralized Protocol Monetization and Forks,” Ethereum Blog, April 30, 2014. https://blog.ethereum.org/2014/04/30/decentralized-protocol-monetization-and-forks. 15. It is likely that architecting it “optimally” is impossible, based on a set of results from a branch of economics called mechanism design. 16.

An alternative might be for each transaction to have a small, voluntary “commission” associated with it, and for this to be added to the payment the customer sends the provider, then shared as a reward to the “miner.”18 This would also suggest that there will be “attention” economies of scale associated with decentralized peer-to-peer marketplaces—the crowd has to notice the blockchain and care enough about it to verify its transactions and maintain the integrity of the ledger. Otherwise, what begins as a decentralized system may simply evolve into a traditional third-party platform that merely uses a glorified blockchain database. Perhaps some of the greatest opportunity from decentralized peer-to-peer systems will come from the emerging decentralized autonomous organizations (DAOs) and decentralized collaborative organizations (DCOs) such as those that are being architected by Buterik’s Ethereum and by Field and DeFillipi’s Backfeed. Such organizations posit a holistic model for organizing economic activity in a decentralized manner.

., a centralized entity, or PayPal itself)—keeps track of who has how much, and updates a private digital “ledger” of some sort every time someone sends money to someone else.7 Bitcoin, in contrast, uses a public ledger, the blockchain. Every user of Bitcoin has a copy of this blockchain, and it contains every single bitcoin transaction since the currency was created. When you say, “I possess at least one currency unit from prior transaction Q, and I am giving Clay one unit,” Clay can verify that the message is from you by checking your signature, and he can then check his copy of the blockchain to be assured that you in fact have bitcoin to spend. But this approach leads to a problem. Suppose you only have one currency unit to spend. Now, let’s say you simultaneously send a signed message to both Clay and Emily giving them each one unit. If they both checked their current copy of the blockchain, they would find the prior transaction, it would seem like you have the money, and both of them would update their ledgers, leading to a problem down the line.


pages: 275 words: 84,980

Before Babylon, Beyond Bitcoin: From Money That We Understand to Money That Understands Us (Perspectives) by David Birch

agricultural Revolution, Airbnb, bank run, banks create money, bitcoin, blockchain, Bretton Woods, British Empire, Broken windows theory, Burning Man, capital controls, cashless society, Clayton Christensen, clockwork universe, creative destruction, credit crunch, cross-subsidies, crowdsourcing, cryptocurrency, David Graeber, dematerialisation, Diane Coyle, distributed ledger, double entry bookkeeping, ethereum blockchain, facts on the ground, fault tolerance, fiat currency, financial exclusion, financial innovation, financial intermediation, floating exchange rates, Fractional reserve banking, index card, informal economy, Internet of things, invention of the printing press, invention of the telegraph, invention of the telephone, invisible hand, Irish bank strikes, Isaac Newton, Jane Jacobs, Kenneth Rogoff, knowledge economy, Kuwabatake Sanjuro: assassination market, large denomination, M-Pesa, market clearing, market fundamentalism, Marshall McLuhan, Martin Wolf, mobile money, money: store of value / unit of account / medium of exchange, new economy, Northern Rock, Pingit, prediction markets, price stability, QR code, quantitative easing, railway mania, Ralph Waldo Emerson, Real Time Gross Settlement, reserve currency, Satoshi Nakamoto, seigniorage, Silicon Valley, smart contracts, social graph, special drawing rights, technoutopianism, the payments system, The Wealth of Nations by Adam Smith, too big to fail, transaction costs, tulip mania, wage slave, Washington Consensus, wikimedia commons

On the one hand there were advocates of the ‘code is law’ school of thought who felt that the investors should take their medicine, and on the other there were advocates of the ‘pragmatic’ school of thought who felt that the transactions should be reversed. Since you can’t go back and edit a blockchain (which is sort of the point of it), this is achieved by ‘forking’ to create a new blockchain. This was done but a significant minority of miners felt that this was the wrong decision so they continued with the original blockchain as Ethereum Classic. At the time of writing, the ‘market cap’ of Ethereum is significantly higher than that of Ethereum Classic. Ripple After Bitcoin and Ethereum, the third biggest cryptocurrency is Ripple, which unlike those first two has its roots in local exchange trading systems (Peck 2013). It is a protocol for value exchange that uses a shared ledger but it does not use a Bitcoin-like blockchain, preferring another kind of what is known as a ‘Byzantine fault-tolerant consensus-forming process’.

Crypto-alternatives Not only will there be cryptocurrencies beyond Bitcoin and not only will they be better – more powerful and more efficient – there will also be a great many of them as the cost of launching a digital currency falls. Without launching into a treatise on cryptocurrencies, I think it would be useful to take a quick look at a couple of the newer cryptocurrencies on the block (pun intended) to give a sense of the spectrum of possibilities. Ethereum Ethereum is comparable to Bitcoin, in that it uses a blockchain, but it was designed to provide a better platform for shared ledger applications. One of the most interesting users of such applications was the Distributed Autonomous Organization (DAO). The general concept of a distributed autonomous organization goes back a few years, having roots in organizational decentralization theories that have been turbocharged (as William Mougayar puts it) by cryptocurrency technologies and trust-based automation (Mougayar 2016), but the DAO in question was created as a new kind of business: an investor-directed investment fund.

There is, in my opinion, no sane argument against digital fiat. Let’s get on with it. And let’s have no limit on the number of different currencies that the banking system’s ledger might hold. Here comes the blockchain What might that ledger look like? The emerging consensus, at least in the finance sector, seems to be that the technology behind Bitcoin, the blockchain, will disrupt the sector (Raymaekers 2015), although many commentators are not at all clear how (or, indeed, why). Melanie Swan posits that even if all of the infrastructure developed by the blockchain industry were to disappear, its legacy could persist (Swan 2015). This is because the blockchain has provided new larger-scale ideas about how to organize financial services and, as Swan and other observers have noted, there is a very strong case for decentralized models.


pages: 50 words: 15,603

Orwell Versus the Terrorists: A Digital Short by Jamie Bartlett

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

augmented reality, barriers to entry, bitcoin, blockchain, crowdsourcing, cryptocurrency, Edward Snowden, ethereum blockchain, Kuwabatake Sanjuro: assassination market, Satoshi Nakamoto, technoutopianism, Zimmermann PGP

Back in 2009, in an obscure cryptography chat forum, a mysterious man called Satoshi Nakamoto invented the crypto-currency Bitcoin.fn3 It turns out the real genius of Bitcoin was not the currency at all, but the way that it works. Bitcoin creates an immutable, unchangeable public copy of every transaction ever made by its users, which is hosted and verified by every computer that downloads the software. This public copy is called the ‘blockchain’. Pretty soon, enthusiasts figured out that the blockchain system could be used for anything. Armed with 30,000 Bitcoins (around $12 million) of crowdfunded support, the Ethereum project is dedicated to creating a new, blockchain-operated internet. Ethereum’s developers hope the system will herald a revolution in the way we use the net – allowing us to do everything online directly with each other, not through the big companies that currently mediate our online interaction and whom we have little choice but to trust with our data.

According to a recent poll by Ipsos-Mori and the Royal Statistics Society (2014), only between 4 and 7 per cent of respondents say they have a high level of trust in institutions such as media, internet companies, telecommunications companies and insurance companies to use data appropriately. fn3 You’ve probably heard of this pseudonymous digital cash because it was, and still is, the currency of choice on the illegal online drugs markets. fn4 And increasingly, I predict, politics. Although no political parties – save the occasional fringe party – have given any thought to what crypto-currencies might mean. What does a modern centre-left party think of crypto-currency, or of blockchain decentralisation? They have no idea. Orwell I’ve interviewed many of the people in the frontline of the battle, the people behind the extraordinary innovation currently taking place. They see the question of online privacy as the digital front in a battle over individual liberty: a rejection of internet surveillance and censorship that they believe has come to dominate modern life online.


pages: 395 words: 116,675

The Evolution of Everything: How New Ideas Emerge by Matt Ridley

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

affirmative action, Affordable Care Act / Obamacare, Albert Einstein, Alfred Russel Wallace, altcoin, anthropic principle, anti-communist, bank run, banking crisis, barriers to entry, bitcoin, blockchain, British Empire, Broken windows theory, Columbian Exchange, computer age, Corn Laws, cosmological constant, creative destruction, Credit Default Swap, crony capitalism, crowdsourcing, cryptocurrency, David Ricardo: comparative advantage, demographic transition, Deng Xiaoping, discovery of DNA, Donald Davies, double helix, Downton Abbey, Edward Glaeser, Edward Lorenz: Chaos theory, Edward Snowden, endogenous growth, epigenetics, ethereum blockchain, facts on the ground, falling living standards, Ferguson, Missouri, financial deregulation, financial innovation, Frederick Winslow Taylor, Geoffrey West, Santa Fe Institute, George Gilder, George Santayana, Gunnar Myrdal, Henri Poincaré, hydraulic fracturing, imperial preference, income per capita, indoor plumbing, interchangeable parts, Intergovernmental Panel on Climate Change (IPCC), invisible hand, Isaac Newton, Jane Jacobs, Jeff Bezos, joint-stock company, Joseph Schumpeter, Kenneth Arrow, Kevin Kelly, Khan Academy, knowledge economy, land reform, Lao Tzu, long peace, Lyft, M-Pesa, Mahatma Gandhi, Mark Zuckerberg, means of production, meta analysis, meta-analysis, mobile money, money: store of value / unit of account / medium of exchange, Mont Pelerin Society, moral hazard, Necker cube, obamacare, out of africa, packet switching, peer-to-peer, phenotype, Pierre-Simon Laplace, price mechanism, profit motive, RAND corporation, random walk, Ray Kurzweil, rent-seeking, reserve currency, Richard Feynman, Richard Feynman, rising living standards, road to serfdom, Ronald Coase, Ronald Reagan, Satoshi Nakamoto, Second Machine Age, sharing economy, smart contracts, South Sea Bubble, Steve Jobs, Steven Pinker, The Wealth of Nations by Adam Smith, Thorstein Veblen, transaction costs, women in the workforce

If you live under a despotic regime, sending a message critical of your government on Twitter leaves you vulnerable to that government coercing Twitter, the company, into handing over your details. With Twister, that will not be possible. Then there is Namecoin, which aims to issue internet names in a decentralised, peer-to-peer fashion; Storj, which plans to allow cloud storage of files hidden inside blockchains; and Ethereum, which is a decentralised peer-to-peer network ‘designed to replace absolutely anything that can be described in code’, as Matthew Sparkes puts it. The digital expert Primavera De Filippi sees Ethereum and its ilk coming up with smart contracts, allowing ‘distributed autonomous organisations’ that, once they have been deployed on the blockchain, ‘no longer need (nor heed) their creators’. In other words, not just driverless cars, but ownerless firms. Imagine in the future summoning a taxi that not only has no driver, but that belongs to a computer network, not to a human being.

Mercatus Center, George Mason University. On the ITU, Blue, Violet 2013. FCC to Congress: U.N.’s ITU Internet plans ‘must be stopped’. zdnet.com 5 February 2013. On net censorship, MacKinnon, Rebecca 2012. Consent of the Networked. Basic Books. On blockchains, Frisby, Dominic 2014. Bitcoin: The Future of Money?. Unbound. On Nick Szabo’s ‘shelling out’, nakamotoinstitute.org/shelling-out/. On Ethereum’s white paper, A Next-Generation Smart Contract and Decentralized Application Platform. https://github.com/ethereum. On private money, Dowd, K. 2014. New Private Monies. IEA. On smart contracts, De Filippi, P. 2014. Ethereum: freenet or skynet?. At cyber.law.harvard.edu/events 14 April 2014. On digital politics, Carswell, Douglas 2014. iDemocracy will change Westminster for the Better. Govknow.com 20 April 2014. And Carswell, Douglas 2012.

Satoshi invited users to ‘escape the arbitrary inflation risk of centrally managed currencies!’ It is hard to get your head around how bitcoin works. One of the pithiest explanations I have come across is in a recent launch by Ethereum, a business built to follow up on bitcoin: ‘The innovation provided by Satoshi is the idea of combining a very simple decentralised consensus protocol, based on nodes combining transactions into a “block” every ten minutes, creating an ever-growing blockchain, with proof of work as a mechanism through which nodes gain the right to participate in the system.’ If you think that’s hard to understand, you are not alone. I have yet to come across a description of blockchain technology in English, as opposed to mathematics, that is really clear. In outline, I know that bitcoin is effectively a public ledger – a compendium of transactions, stored by bitcoin users all over the world.


pages: 403 words: 111,119

Doughnut Economics: Seven Ways to Think Like a 21st-Century Economist by Kate Raworth

3D printing, Asian financial crisis, bank run, basic income, battle of ideas, Berlin Wall, bitcoin, blockchain, Branko Milanovic, Bretton Woods, Buckminster Fuller, call centre, Capital in the Twenty-First Century by Thomas Piketty, Cass Sunstein, choice architecture, clean water, cognitive bias, collapse of Lehman Brothers, complexity theory, creative destruction, crowdsourcing, cryptocurrency, Daniel Kahneman / Amos Tversky, David Ricardo: comparative advantage, dematerialisation, Douglas Engelbart, Douglas Engelbart, en.wikipedia.org, energy transition, Erik Brynjolfsson, ethereum blockchain, Eugene Fama: efficient market hypothesis, experimental economics, Exxon Valdez, Fall of the Berlin Wall, financial deregulation, Financial Instability Hypothesis, full employment, global supply chain, global village, Henri Poincaré, hiring and firing, Howard Zinn, Hyman Minsky, income inequality, Intergovernmental Panel on Climate Change (IPCC), invention of writing, invisible hand, Isaac Newton, John Maynard Keynes: Economic Possibilities for our Grandchildren, Joseph Schumpeter, Kenneth Arrow, Kenneth Rogoff, land reform, land value tax, Landlord’s Game, loss aversion, low skilled workers, M-Pesa, Mahatma Gandhi, market fundamentalism, Martin Wolf, means of production, megacity, mobile money, Mont Pelerin Society, Myron Scholes, neoliberal agenda, Network effects, Occupy movement, off grid, offshore financial centre, oil shale / tar sands, out of africa, Paul Samuelson, peer-to-peer, planetary scale, price mechanism, quantitative easing, randomized controlled trial, Richard Thaler, Ronald Reagan, Second Machine Age, secular stagnation, shareholder value, sharing economy, Silicon Valley, Simon Kuznets, smart cities, smart meter, South Sea Bubble, statistical model, Steve Ballmer, The Chicago School, The Great Moderation, the map is not the territory, the market place, The Spirit Level, The Wealth of Nations by Adam Smith, Thomas Malthus, Thorstein Veblen, too big to fail, Torches of Freedom, trickle-down economics, ultimatum game, universal basic income, Upton Sinclair, Vilfredo Pareto, wikimedia commons

Complementary currencies can clearly enrich and empower communities but game-changing ones are now emerging, thanks to the invention of Blockchain. Combining database and network technologies, Blockchain is a digital peer-to-peer decentralised platform for tracking all kinds of value exchanged between people. Its name derives from the blocks of data – each one a snapshot of all transactions that have just been made in the network – which are linked together to create a chain of data blocks, adding up to a minute-by-minute record of the network’s activity. And since that record is stored on every computer in the network, it acts as a public ledger that cannot be altered, corrupted or deleted, making it a highly secure digital backbone for the future of e-commerce and transparent governance. One fast-rising digital currency that uses blockchain technology is Ethereum, which, among its many possible applications, is enabling electricity microgrids to set up peer-to-peer trading in renewable energy.

These microgrids allow every nearby home, office or institution with a smart meter, Internet connection, and solar panel on its roof to hook in and sell or buy surplus electrons as they are generated, all automatically recorded in units of the digital currency. Such decentralised networks – ranging from a neighbourhood block to a whole city – build community resilience against blackouts and cut long-distance energy transmission losses at the same time. What’s more, the information embedded in every Ethereum transaction allows network members to put their values into action in the microgrid market, for example by opting to buy electricity from the nearest or greenest suppliers, or only from those that are community-owned or not-for-profit.59 And this is just one example of its potential. ‘Ethereum is a currency for the modern age,’ says the cryptocurrency expert David Seaman. ‘It’s a platform that could be really important to society down the road in ways that we can’t even predict yet.’60 These very different examples illustrate a few of the myriad possibilities of monetary redesign, involving the market, the state and the commons.

Ruddick, W. (2015) ‘Kangemi-Pesa Launch Prep & More Currency News’, Grassroots Economics, available at: http://www.grassrootseconomics.org/kangemi-pesa-launch-prep 57. www.zeitvorsorge.ch/ 58. Strassheim, I. (2014) ‘Zeit statt Geld fürs Alter sparen’, Migros-Magazin, 1 September 2014. www.zeitvorsorge.ch/#!/DE/24/Medien.htm 59. DEVCON1 (2016) Transactive Grid: a decentralized energy management system. Presentation at Ethereum Developer Conference, 9–13 November 2015, London, available at: https://www.youtube.com/watch?v=kq8RPbFz5UU 60. Seaman, D. (2015) ‘Bitcoin vs. Ethereum explained for NOOBZ’, published 30 November 2015, available at: https://www.youtube.com/watch?v=rEJKLFH8q5c 61. Trades Union Congress (2012) The Great Wages Grab. London: TUC. https://www.tuc.org.uk/sites/default/files/tucfiles/TheGreatWagesGrab.pdf 62. Mishel, L. and Shierholz, H. (2013) A Decade of Flat Wages. EPI Briefing Paper no. 365, Washington, DC: Economic Policy Institute. http://www.epi.org/files/2013/BP365.pdf 63.


pages: 361 words: 97,787

The Curse of Cash by Kenneth S Rogoff

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Andrei Shleifer, Asian financial crisis, bank run, Ben Bernanke: helicopter money, Berlin Wall, bitcoin, blockchain, Bretton Woods, capital controls, Carmen Reinhart, cashless society, central bank independence, cryptocurrency, debt deflation, distributed ledger, Edward Snowden, ethereum blockchain, eurozone crisis, Fall of the Berlin Wall, fiat currency, financial exclusion, financial intermediation, financial repression, forward guidance, frictionless, full employment, George Akerlof, German hyperinflation, illegal immigration, inflation targeting, informal economy, interest rate swap, Isaac Newton, Johann Wolfgang von Goethe, Kenneth Rogoff, labor-force participation, large denomination, liquidity trap, money market fund, money: store of value / unit of account / medium of exchange, moral hazard, moveable type in China, New Economic Geography, offshore financial centre, oil shock, open economy, payday loans, price stability, purchasing power parity, quantitative easing, RAND corporation, RFID, savings glut, secular stagnation, seigniorage, The Great Moderation, the payments system, transaction costs, unbanked and underbanked, unconventional monetary instruments, underbanked, unorthodox policies, Y2K, yield curve

Already, markets are forming to exploit this capacity, for example, in applications surrounding Ethereum.4 That distributed-ledger technology could in theory someday produce a superior currency, however, hardly means that the world is already there in practice. One problem is that the value of Bitcoin 1.0 fluctuates wildly (figure 14.1), so it hardly fulfills the function of a stable store of value. In principle, it could become more stable if it gained more widespread monetary acceptance. Figure 14.2 shows that the price of gold in terms of dollars was much more stable under the gold standard, even in real (purchasing-power) terms. Whether this could happen without a government that aimed to stabilize the value of Bitcoin 1.0 is at best a conjecture. Figure 14.1: Market price of bitcoins (US dollars). Source: Blockchain.info. Figure 14.2: Real gold price (US dollars).

See also Bitcoin; cryptocurrencies American Hustle (Russell), 71 Amromin, Gene, 238n22 Andolfatto, David, 213 Antràs, Pol, 236n12 Argentina, 44, 82 Ascaria, Guido, 248n5 Australia, 52, 132 Austria: cash, per capita holdings of, 33; cash used for different kinds of purchases, percentage of, 55–56; coinage debasement in, 20; currency held by consumers in, 51–52; deutsche mark currency demand, as a control for estimating, 45; stamp currency experiment in, 164–65 Automated Clearing House system, 103 Bagehot, Walter, 244n9 Bank Act of 1844 (Peel’s Act), 235n25 Bank of England: inflation target, choice of, 153; interest rate hike prior to 2008, impact of, 177–78; nominal policy interest rates, 2000–2015, 130; notes convertible to specie, early issue of, 26; quantitative easing by, 135–36 Bank of Japan: inflationary expectations, challenges faced in lifting, 124; inflation target, choice of, 153; January 2016 policy of, 250n5; museum of, understanding coinage debasement in, 20; negative interest rates, experience with, 1, 161; quantitative easing by, 135–36, 143; zero-bound problem of, lack of international coordination regarding, 206 Bartzsch, Nikolaus, 236n23 Baum, Frank (author of The Wonderful Wizard of Oz), 192 Belgium: cash used for different kinds of purchases, percentage of, 55; currency/GDP ratio, 1995, 46–47; restrictions on the use of cash, 64 Bennett, Paul, 237n4 Bernanke, Ben: financial stability, limits to concern regarding, 176; “global savings glut,” 122; “Helicoper Ben,” advice for Japan from, 155; inflation targeting adopted under, 232; macroprudential regulation, argument for, 177; Perry’s attack on, 191; small interest hikes, limited impact of, 177; “taper tantrum” set off by, 126, 141 Billi, Roberto, 229 biometric method for estimating foreign holdings of currency, 43–44 Bitcoin/bitcoins: “Bencoin” as governmental version of, 209–10, 213–14; blockchain technology pioneered by, 112; as a currency, possibility of, 211; as encrypted digital technology, 208; inflation and, 213; market price of, 212; as payment mechanism for criminal activities, 72; security of using, 67 Black, Fischer, 244n5 Blackburn, David, 253n6 Blanchard, Olivier Jean, 248n2, 252n7 blockchain technology, 112, 210, 213–14 border control, issue of, 75–76 Bordo, Michael D., 234n6 Brazil, 65, 183–84, 191, 205 Breaking Bad (TV series), 68, 240n27 Bretton Woods regime, 30 bribes, 70 Britain. See United Kingdom Bryan, William Jennings (US politician), 192 Buehn, Andreas, 239n12 Buiter, Willem, 167–74 Burns, Arthur, 189 Caballero, Ricardo J., 246n26 Canada: corruption in, 71; currency/GDP ratio, 1995, 46; currency/GDP ratio, 2015, 36–37, 41; currency held by consumers in, 52; discount rate cuts in response to recent crises, 132; foreign holdings of currency, 42; interest rates near the zero bound, 131; large-denomination notes, 37; large-denomination notes, phaseout of, 95; paper currency phaseout, costs and benefits of, 89; revenue as a percentage of GDP, 2006–2015, 83–84; tax evasion in, 65–66; United States and, estimating foreign holdings of US currency by comparing, 41–43 Canzoneri, Matthew, 245n14 capital controls, 27, 202 Capone, Al, 61 Cebula, Richard J., 238n6 cell phones/smartphones: emergencies and, 110–11; free or subsidized for low-income individuals, 3, 48, 93–94; government monitoring of, 101; laundry, survival in, 112; transactions on, 5, 98 central bank independence, 90–91, 106, 190–91, 194–95, 231 Chakravorti, Sujit, 238n22 Chavez, Cesar, 75 Chicago plan, 86, 214 China: birth of paper currency in, 21–25; Marco Polo in, 15; origin of coinage in, 21; paper money printing and rice price in the Yuan dynasty, 24; transition from coinage to paper currency, 97, 100 China, People’s Republic of: Chinese currency, imagining supplanting US $100 bills with, 16; corruption in, 71; counterfeiting in, 78; cryptocurrencies in, 210; demand for gold jewelry in, 215; global criminals, unsuitability of yuan for, 202; paper currency phaseout, difficulties of, 204; revenue as a percentage of GDP, 2006–2015, 83 Christiano, Lawrence J., 255n10 Chung, Hess, 245n16, 247n28 Churchill, Winston, 29 coinage: debasement of, 19–20; gold-to-silver value, Alexander’s declaration of, 18–19; origin of, 21; technology in, 19 Colacelli, Mariana, 253n6 Colombia, 17, 69, 202–4 Comaneci, Nadia (gymnast), 162 commodity currencies, 17, 20–21 Congo, Democratic Republic of, 183–84 consumer cash holdings, 49–50 consumption taxes, 156–57 Correia, Isabelle, 250n18 corruption of public officials, 70–73, 205 cost in GDP of buying back all US paper currency, 217 counterfeiting/counterfeiters, 19, 77–78 criminal activities, 2, 67, 217–18; corruption of public officials, 70–73, 205; counterfeiting, 19, 77–78; human trafficking, human smuggling, and exploitation of migrants, 73–74; illegal immigration, 74–76; large-denomination euro notes and, 200–201; money laundering, 68–69, 76–77; tax evasion (see tax evasion); terrorism, 76–77 Croesus (king of Lydia), 18 cryptocurrencies: Bitcoin (see Bitcoin); European Commission rules regarding, 77; government and the future of, 16, 101; governments and, 208–14; less-cash world, not required for, 98; privacy and, 214; regulated after paper currency phaseout, 100; security and, 113, 210 currency: digital (see Bitcoin; cryptocurrencies); dual currency system, 167–76; entering or leaving the country, requirement to report large amounts of, 41; history of (see history of currency); paper (see paper currency, advantages of; paper currency, phasing out); private, government supplanting of, 16, 208–10; in the underground economy, issue of turning in, 87–89 Danmarks Nationalbank, 162 Davies, Stephen, 167–68, 171 Deaton, Angus, 76 Denmark: benefits paid electronically in, 99; cashless society, movement to, 107, 109; currency/GDP ratio, 1995, 36–37; currency/GDP ratio, 2015, 36–37; interest rates near the zero bound, 131; low-income individuals, accommodations for, 3; negative interest rates, computer software unprepared for, 162; negative interest rates, financial stability and, 178; negative interest rates in, 5, 123; prepaid card not requiring a PIN, option of, 111; restrictions on the use of cash, 64; unauthorized immigrants in, 75 developing countries.

Because the technology is evolving so rapidly, I am hesitant to go into much more detail, beyond saying that phasing out paper currency does not really move the needle much on society’s vulnerability to cybercrime. Some of the present-day obstacles to improving security are really more political than economic. Some innovations in security, such as the potentially disruptive distributed-ledger technology embodied in cryptocurrencies like Bitcoin or Ethereum, may eventually lead to major improvements in financial security, at least at the core of the payment system, as discussed further in chapter 14. It is particularly hard to see in any of these arguments why large-denomination notes are important. Probably they would be looked on askance after a power outage, earthquake, or other kind of catastrophe. I won’t deny there are going to be residual issues that simply take time to sort out.


pages: 233 words: 66,446

Bitcoin: The Future of Money? by Dominic Frisby

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, altcoin, bank run, banking crisis, banks create money, barriers to entry, bitcoin, blockchain, capital controls, Chelsea Manning, cloud computing, computer age, cryptocurrency, disintermediation, ethereum blockchain, fiat currency, fixed income, friendly fire, game design, Isaac Newton, Julian Assange, land value tax, litecoin, M-Pesa, mobile money, money: store of value / unit of account / medium of exchange, Occupy movement, Peter Thiel, Ponzi scheme, prediction markets, price stability, QR code, quantitative easing, railway mania, Ronald Reagan, Satoshi Nakamoto, Silicon Valley, Skype, slashdot, smart contracts, Snapchat, Stephen Hawking, Steve Jobs, Ted Nelson, too big to fail, transaction costs, Turing complete, War on Poverty, web application, WikiLeaks

‘That is what we’re hoping to do.’ How Bitcoin is just the start of something much, much bigger Ethereum is probably the most talked-about development in cryptography at present. Some call it Bitcoin 2.0. It combines the decentralized mining system central to Bitcoin with a software development platform. Its founders say the potential applications are unlimited: from peer-to-peer betting, to financial derivatives, to identity and reputation systems, to insurance and legal contracts. Some say Satoshi Nakamoto may now even be working for Ethereum. Its former CEO is Charles Hoskinson. A bespectacled, bearded, extremely bright, friendly and fast-talking mathematician. I met him over Skype. I wanted to talk to him about Ethereum. But there was something else. I’d been tipped off that he was holding copies of all the private emails Satoshi had sent when Bitcoin was being developed.

‘And so that’s our hope, that’s what we want to do. And the app catalogue is totally decentralized just like the network. So even we don’t control it – so we can’t take apps down or anything and the government can’t take apps down or something like that. So, that’s what we’re trying to do: mainstream this dis-intermediation technology’. The implications of Ethereum – if it takes off – are clearly enormous. For more information about Ethereum, visit ethereum.org. 10 Should You Buy In? You can’t stop things like Bitcoin. It’s like trying to stop gunpowder. It will be everywhere and the world will have to readjust. John McAfee, computer scientist, founder of McAfee Inc In the 1830s and 1840s a mania gripped the UK. A similar mania would soon grip the US in the 1870s and again in the 1890s.

He seems to have a fondness for maps and to be especially interested in diet (in particular, its relationship with genes). He mentions Ethereum a great deal, but the subject he keeps coming back to is Bitcoin. His pinned tweet links to the ‘best computer science paper on Bitcoin’. He comments that, ‘scams are fuelled by misplaced trust. Trust math, (next best) traditional auditing. Make bad security fail early’. And he asserts that ‘Trusted third party: security hole (mtGox) or large traditional bureaucracy (bank). Choose your poison.’ The first people he followed – Gavin Andreson, Andrew Miller and Peter Todd – were all heavily involved in Bitcoin from an early stage. The first companies he followed were Blockstream Project – which is ‘digitizing the entire planet’s assets for the betterment of all its occupants’ – Ethereum and Computer Science, which gives you daily tweets about computer science.


pages: 390 words: 109,870

Radicals Chasing Utopia: Inside the Rogue Movements Trying to Change the World by Jamie Bartlett

Andrew Keen, back-to-the-land, Bernie Sanders, bitcoin, blockchain, blue-collar work, brain emulation, centre right, clean water, cryptocurrency, Donald Trump, drone strike, Elon Musk, energy security, ethereum blockchain, failed state, gig economy, hydraulic fracturing, income inequality, Intergovernmental Panel on Climate Change (IPCC), Jaron Lanier, job automation, John Markoff, Joseph Schumpeter, life extension, Occupy movement, off grid, Peter Thiel, post-industrial society, postnationalism / post nation state, precariat, QR code, Ray Kurzweil, RFID, Rosa Parks, Satoshi Nakamoto, self-driving car, Silicon Valley, Silicon Valley startup, Skype, smart contracts, stem cell, Stephen Hawking, Steve Jobs, Steven Pinker, technoutopianism

* In 2015 a company called the DAO (decentralised autonomous organisation) was founded as an investor-directed capital fund, which exists only virtually, as a series of public smart contracts. Investors can buy shares in the DAO using Ethereum’s (another blockchain) currency, which gives votes on investments. Anyone anywhere in the world can invest, it’s all transparent, there is no board or employees at all, and shareholders receive any profits directly. One month after it was launched to great fanfare, hackers and/or investors managed to exploit a vulnerability by inserting some code that redirected shares into their personal wallets, allowing them to walk off with millions of dollars of investors’ money. There was no way to change it, except to ‘fork’ the blockchain, which meant making a second copy without that malicious code in it. But that goes directly against the principle of an immutable, unchangeable, decentralised network.

When they check out, the lock can automatically order a cleaner, transfer payment to the cleaner and send leftover funds to the room owner. It’s a whole, functioning company that doesn’t exist, except as a computer programme. Blockchains and smart contracts create problems as well as efficiencies. What if you forget your password code, or think you deserve a refund because the room wasn’t as big as promised? And what happens if something incorrect or malicious is placed on one of these immutable databases?* Radical decentralisation is an excellent way to stop the abuse of centralised power, but when things go wrong it’s sometimes helpful having someone in charge.20 Despite these problems, everyone at Hotel Lug was extremely excited by blockchains and their liberating, decentralising potential. (Vit told me blockchains would be ‘absolutely vital’ for Liberland’s taxation and voting systems, and that bitcoin will be an official currency.)

Every time someone sends a bitcoin as payment, a record of the transaction is timestamped to the microsecond, and stored in something called a ‘blockchain’ (each block representing about ten minutes’ worth of transactions). The blocks are ordered chronologically, and each includes a digital signature (a ‘hash’) of the previous block, which administers the ordering and guarantees that a new block can join the chain only if it starts from where the preceding one finishes. A copy of the blockchain—which is basically a record of every single transaction ever made—is kept by everyone who has installed the bitcoin software. To ensure everything is running as it should, the blockchain is constantly verified by the computers of certain key users who compete to crack a mathematical puzzle that allows them to officially verify the blocks are all in order (and in exchange they get to mint a small number of new bitcoins).


pages: 366 words: 94,209

Throwing Rocks at the Google Bus: How Growth Became the Enemy of Prosperity by Douglas Rushkoff

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, activist fund / activist shareholder / activist investor, Airbnb, algorithmic trading, Amazon Mechanical Turk, Andrew Keen, bank run, banking crisis, barriers to entry, bitcoin, blockchain, Burning Man, business process, buy low sell high, California gold rush, Capital in the Twenty-First Century by Thomas Piketty, carbon footprint, centralized clearinghouse, citizen journalism, clean water, cloud computing, collaborative economy, collective bargaining, colonial exploitation, Community Supported Agriculture, corporate personhood, corporate raider, creative destruction, crowdsourcing, cryptocurrency, disintermediation, diversified portfolio, Elon Musk, Erik Brynjolfsson, ethereum blockchain, fiat currency, Firefox, Flash crash, full employment, future of work, gig economy, Gini coefficient, global supply chain, global village, Google bus, Howard Rheingold, IBM and the Holocaust, impulse control, income inequality, index fund, iterative process, Jaron Lanier, Jeff Bezos, jimmy wales, job automation, Joseph Schumpeter, Kickstarter, loss aversion, Lyft, Marc Andreessen, Mark Zuckerberg, market bubble, market fundamentalism, Marshall McLuhan, means of production, medical bankruptcy, minimum viable product, Naomi Klein, Network effects, new economy, Norbert Wiener, Oculus Rift, passive investing, payday loans, peer-to-peer lending, Peter Thiel, post-industrial society, profit motive, quantitative easing, race to the bottom, recommendation engine, reserve currency, RFID, Richard Stallman, ride hailing / ride sharing, Ronald Reagan, Satoshi Nakamoto, Second Machine Age, shareholder value, sharing economy, Silicon Valley, Snapchat, social graph, software patent, Steve Jobs, TaskRabbit, The Future of Employment, trade route, transportation-network company, Turing test, Uber and Lyft, Uber for X, unpaid internship, Y Combinator, young professional, zero-sum game, Zipcar

Ryan Lawler, “Bitcoin Miners Are Racking Up $150,000 a Day in Power Consumption Alone,” techcrunch.com, April 13, 2013. 38. Mark Gimein, “Virtual Bitcoin Mining Is a Real-World Environmental Disaster,” bloomberg.com, April 12, 2013. 39. Michael Carney, “Bitcoin Has a Dark Side: Its Carbon Footprint,” pando.com, December 16, 2013. 40. Lawler, “Bitcoin Miners Are Racking Up $150,000 a Day.” 41. Jon Evans, “Enter the Blockchain: How Bitcoin Can Turn the Cloud Inside Out,” techcrunch.com, March 22, 2014. 42. Vitalik Buterin, “DAOs, DACs, DAs and More: An Incomplete Terminology Guide,” blog.ethereum.org, May 6, 2014. 43. David Johnston, Sam Onat Yilmaz, Jeremy Kandah, Nikos Bentenitis, Farzad Hashemi, Ron Gross, Shawn Wilkinson, and Steven Mason, “The General Theory of Decentralized Applications, Dapps,” github.com, June 9, 2014. 44. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System.” 45. National Patient Advocate Foundation, “Issue Brief: Medical Debt, Medical Bankruptcy and the Impact on Patients,” npaf.org, September 2012. 46.

This has applications well beyond bitcoins.41 The blockchain can “notarize” and record anything we choose, not just the cash transactions between Bitcoin users. Entire companies can be organized on blockchains, which can authenticate everything from contracts to compensation. Decentralized autonomous corporations, or DACs, for example, are a fast-growing category of businesses that depend on a collectively computed blockchain to determine how shares are distributed. To count as a true DAC, a company must be an open-source endeavor whose operation occurs without the supervision of a single guiding body, such as a board or a CEO.* Instead, a project’s governing rules and mission must emerge from consensus. Project workers are compensated for their labor or capital investment with shares in the blockchain, which increase in number as the project develops.42 We can think of DACs as companies whose stock is issued little by little as the company grows from a mere business plan into a sustainable enterprise.

Only individuals who create value for the company are awarded new stock proportionate to their contributions.43 Fittingly, the majority of DACs currently sell blockchain-related services themselves. By committing to the blockchain for their own governance and share distribution, DACs lend credibility to the technologies they are selling. They stand in stark contrast to the bitcoin ETFs being peddled by the Winklevoss twins and others, in which profit is extracted through traditional Wall Street markups and expense ratios, and transactions remain opaque. By using the blockchain, DACs subject themselves to total transparency. Everyone can see everything. Even with all their advantages, there is a certain brittleness to most of these blockchain projects. Those who get in early tend to earn the most of whatever coin is being distributed. Moreover, the rules that get into a system in the beginning become pretty intractable.


pages: 330 words: 91,805

Peers Inc: How People and Platforms Are Inventing the Collaborative Economy and Reinventing Capitalism by Robin Chase

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, Airbnb, Amazon Web Services, Andy Kessler, banking crisis, barriers to entry, basic income, Benevolent Dictator For Life (BDFL), bitcoin, blockchain, Burning Man, business climate, call centre, car-free, cloud computing, collaborative consumption, collaborative economy, collective bargaining, commoditize, congestion charging, creative destruction, crowdsourcing, cryptocurrency, decarbonisation, don't be evil, Elon Musk, en.wikipedia.org, ethereum blockchain, Ferguson, Missouri, Firefox, frictionless, Gini coefficient, hive mind, income inequality, index fund, informal economy, Intergovernmental Panel on Climate Change (IPCC), Internet of things, Jane Jacobs, Jeff Bezos, jimmy wales, job satisfaction, Kickstarter, Lean Startup, Lyft, means of production, megacity, Minecraft, minimum viable product, Network effects, new economy, Oculus Rift, openstreetmap, optical character recognition, pattern recognition, peer-to-peer, peer-to-peer lending, peer-to-peer model, Richard Stallman, ride hailing / ride sharing, Ronald Coase, Ronald Reagan, Satoshi Nakamoto, Search for Extraterrestrial Intelligence, self-driving car, shareholder value, sharing economy, Silicon Valley, six sigma, Skype, smart cities, smart grid, Snapchat, sovereign wealth fund, Steve Crocker, Steve Jobs, Steven Levy, TaskRabbit, The Death and Life of Great American Cities, The Future of Employment, The Nature of the Firm, transaction costs, Turing test, turn-by-turn navigation, Uber and Lyft, Zipcar

All kinds of important data relating to the subject and object (name, address, ratings, contingencies), and all types of actions (rent, buy, barter, rideshare, publish) could be substituted in. Budding companies—LaZooz, Swarm, and Ethereum, to name three—are fleshing out this idea. Any kind of business or personal transaction needing standard contracts, for standard actions, with standard rules could all be sent, appended, and amended using the block chain. Every transaction can have its own special combination built using standard building blocks. Rule-making and standards adoption is all accomplished through decentralized leader-free “voting” based on market signals. All of the transactions on the public ledger are there for all to see, and open source. In the potentiality of block-chain visionaries, the most useful programs, contracts, and methods will be the ones that are most copied, eventually becoming standards.

While developers are improving the software, they can’t force a change in the Bitcoin protocol because all users are free to choose what software and version they use. In order to stay compatible with each other, all users need to use software complying with the same rules. Bitcoin can only work correctly with a complete consensus among all users. Therefore, all users and developers have a strong incentive to protect this consensus.22 While the block-chain protocol has necessarily evolved over the last six years, the evolution is driven by consensus, with the most suitable and widely adopted changes being the ones that win out over the alternatives. The block-chain process errs toward consensus and changes only for big improvements. This chapter has been about exploring ways to finance platforms without the involvement of government or the private sector. Let me hand the narrative over to the editor of The Coinsman, who describes his 2013 trip to China to visit a huge data center containing some of the computers “mining” Bitcoins: Getting the opportunity to visit this mining operation was very eye-opening for me.

The decentralized reward system makes payments based upon digitally measurable and verifiable outputs. We often pay for services this way: Cellphone use is paid by the minute or byte and Zipcar by the hour and mile using rates the company sets. Having a reward system that is adopted and applied by a decentralized group is more challenging and therefore more impressive. Can we allow for nuanced circumstances? How do we deal with arguments? Innovators are now repurposing the block-chain methodology for a much wider range of activities and providing rewards dynamically based on more localized circumstances. An Israeli startup, LaZooz, is using the block chain to build a ridesharing network. People sign up and download the app, which measures distances travelled, and provides the reward in Zooz tokens accordingly. You can think back to my attempt at building a critical mass with GoLoco, and BlaBlaCar’s success fueled in part by some luck (transit strikes and a volcanic eruption).


pages: 903 words: 235,753

The Stack: On Software and Sovereignty by Benjamin H. Bratton

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

1960s counterculture, 3D printing, 4chan, Ada Lovelace, additive manufacturing, airport security, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, algorithmic trading, Amazon Mechanical Turk, Amazon Web Services, augmented reality, autonomous vehicles, basic income, Benevolent Dictator For Life (BDFL), Berlin Wall, bioinformatics, bitcoin, blockchain, Buckminster Fuller, Burning Man, call centre, carbon footprint, carbon-based life, Cass Sunstein, Celebration, Florida, charter city, clean water, cloud computing, connected car, corporate governance, crowdsourcing, cryptocurrency, dark matter, David Graeber, deglobalization, dematerialisation, disintermediation, distributed generation, don't be evil, Douglas Engelbart, Douglas Engelbart, Edward Snowden, Elon Musk, en.wikipedia.org, Eratosthenes, ethereum blockchain, facts on the ground, Flash crash, Frank Gehry, Frederick Winslow Taylor, future of work, Georg Cantor, gig economy, global supply chain, Google Earth, Google Glasses, Guggenheim Bilbao, High speed trading, Hyperloop, illegal immigration, industrial robot, information retrieval, Intergovernmental Panel on Climate Change (IPCC), intermodal, Internet of things, invisible hand, Jacob Appelbaum, Jaron Lanier, John Markoff, Jony Ive, Julian Assange, Khan Academy, liberal capitalism, lifelogging, linked data, Mark Zuckerberg, market fundamentalism, Marshall McLuhan, Masdar, McMansion, means of production, megacity, megastructure, Menlo Park, Minecraft, Monroe Doctrine, Network effects, new economy, offshore financial centre, oil shale / tar sands, packet switching, PageRank, pattern recognition, peak oil, peer-to-peer, performance metric, personalized medicine, Peter Eisenman, Peter Thiel, phenotype, Philip Mirowski, Pierre-Simon Laplace, place-making, planetary scale, RAND corporation, recommendation engine, reserve currency, RFID, Robert Bork, Sand Hill Road, self-driving car, semantic web, sharing economy, Silicon Valley, Silicon Valley ideology, Slavoj Žižek, smart cities, smart grid, smart meter, social graph, software studies, South China Sea, sovereign wealth fund, special economic zone, spectrum auction, Startup school, statistical arbitrage, Steve Jobs, Steven Levy, Stewart Brand, Stuxnet, Superbowl ad, supply-chain management, supply-chain management software, TaskRabbit, the built environment, The Chicago School, the scientific method, Torches of Freedom, transaction costs, Turing complete, Turing machine, Turing test, universal basic income, urban planning, Vernor Vinge, Washington Consensus, web application, Westphalian system, WikiLeaks, working poor, Y Combinator

Would it do more to ground money in a marking fabrication of total debt that is more relevant to economies defined by the paradoxes of Anthropocenic growth? Speaking of reserve currencies, Bitcoin introduces addressable scarcity not in direct relation to the sum of mined minerals or national currencies, but by the mathematics of solving increasingly difficult problems toward an eventual arbitrary limit of 21 million “coins.” There is much to explore with Bitcoin, blockchains and related initiatives, such as Ethereum, but it is also the monetary platform of choice of secessionist projects for which the metaphysical expulsion of externalities is the paramount program, as important if not more than the disintermediation of central banks. The version of Bitcoin that we have (other currencies may fork or follow) is exemplary of the future-archaic quality of many Stack innovations. It is, as Paul Krugman puts it, “both a 17th century and 21st century currency at once,” a currency mechanism that would freeze the sum total of possible liquid value tokens in the world, now and forever.64 In this regard, for certain persuasions, it is better than magic rocks (like gold) because incrementally more gold can always be mined, allowing rootless cosmopolitans to upset “the natural order” of hierarchical hereditary accumulation.

See also platform economics Anthropocenic, 58, 103 of borders, 173 capitalist, 56 City layer, 159–160 Cloud model, 137 electronics, mining and trading in, 82–83 zero-sum, 336 economy of additive manufacturing, 202 of cognitive capital, 110, 116 computational, 328 computer-controlled, 58–60 of contemporary warfare, 248 digital, 196 of energy, 92, 106–107 Facebook, 127 Google, 136–138, 159, 444n26 of identity, 270 of information, 199 of mobility, 280 of prostheticization, 273 of reversible partitions, 21 of scarcity, 208 and sovereignty and territory, 114, 316 ecopolitics, 100 ecosystems, 129, 178, 185, 336, 456n6 Ecumenopolis (Dioxiadis), 178 Eisenman, Peter, 410n50 Elden, Stewart, 335, 379n12 electricity, 93, 95, 141 electronics, mining and trading in, 82–83 electronic waste, 83 Elysium (Blomkamp), 311, 323, 444n27 emergency accommodating, 103–104 designing for/designing with, 101–104, 321, 325 ecojurisdictions in response to, 99–100 ecological, 105–106, 295, 305 ecopolitics emerging by, 100 exceptional, 103–104, 173, 321–322 permanent, 104 progress in response to, 321 sovereign decision and, 20, 32, 102–103 state of, 32–33, 99 emergent, the, 9 empty space, 30, 380n20 enclosure and escape, 22, 32–33, 149–150, 172–176, 303 “end of history,” 321 “End of Sykes-Picot, The” 430n65 energy alternative sources, 259 ecologies of, 98–104 economy, 92 efficiencies, 140–141 energy-information network, 93, 95 footprint, of planetary-scale computing, 82–83, 92–96, 106–107, 113, 140–141, 258–260, 303–304 grid, 92–96, 140, 152, 201, 294–295 needs, predicted, 113 political loyalty and availability, 141 polities, subdivided, 99–100 post-Anthropocene, 217 Eneropa, 99 Engelbart, Douglas, 343 Enlightenment, 251, 426n46 entertaining securitization, 156 entertainment identifier registry (EIDR), 207 entrance/exit, 149–150, 313, 315, 317, 371 envelope-interface borders, 172–173 envelopes airports, 156–157 architectural, 23, 165–167, 195, 303, 311–313, 323 cars as, 238 City layer, 12, 70, 148–149, 152, 154–155, 163–171, 173 as interface, 167 mixed, designing for, 168–172 paper, 46, 195 physical, 167 software, 167 urban, 168–172 urban platform, 180 User position in relation to, 252 environmental migrants/refugees, 100–101 Epicureanism, inverse, 358 equilibrium, cybernetic, 59, 158 error detection, 50 espionage, 398n21 Estates of The Oaks, 311 Estonia, 399n36, 446n42 Ethereum, 336 ethics, 258, 285, 362 European nomos of World Wars I and II, 25–26 European Space Agency, 181 European Union, 309 exception in Apple model, 130 automation of, 33 becomes the rule, 102–103, 111 emergency, 103–104, 173, 321–322 emergent order of, 110–111 inside and outside the law, 102 interface, 357 legitimate state of, 104 normalizing, 23, 32–33, 39, 103–104 reversibility of, 21, 32–33, 39, 145 sovereignty over, 20–21, 32, 105, 341 state of emergency as, 99, 105 territories of, 114 exclusion agency and, 173–175 augmented reality and, 236, 241–242 elective, 316–317 societal, 308–309, 311–312, 317 exclusive totalities, 245 exit.

We can only anticipate what forms of high weirdness will ensue, as the paired computerization of matter-into-monies (i.e., carbon credits trading, where the value of money is itself measured in carbon) and monies-into-virtuality (i.e., the light pulses of high-speed trading) continues to evolve and accelerate.8 New addressing schemes to locate and coordinate instances of value are multiplying, both as generic currency (bitcoin blockchains) and as platforms for brokering things-with-value (various sharing economy schemes). At stake in all this is also the design of the economy of information itself, from the smallest-scale object or gesture to the largest topological frameworks, and interrelations across scales by drawing and managing an orthodox map in the form of an address table.9 What gets to count and to whom, and who profits from merely counting?


Martin Kleppmann-Designing Data-Intensive Applications. The Big Ideas Behind Reliable, Scalable and Maintainable Systems-O’Reilly (2017) by Unknown

active measures, Amazon Web Services, bitcoin, blockchain, business intelligence, business process, c2.com, cloud computing, collaborative editing, commoditize, conceptual framework, cryptocurrency, database schema, DevOps, distributed ledger, Donald Knuth, Edward Snowden, ethereum blockchain, fault tolerance, finite state, Flash crash, full text search, general-purpose programming language, informal economy, information retrieval, Internet of things, iterative process, John von Neumann, loose coupling, Marc Andreessen, natural language processing, Network effects, packet switching, peer-to-peer, performance metric, place-making, premature optimization, recommendation engine, Richard Feynman, Richard Feynman, self-driving car, semantic web, Shoshana Zuboff, social graph, social web, software as a service, software is eating the world, sorting algorithm, source of truth, SPARQL, speech recognition, statistical model, web application, WebSocket, wikimedia commons

A transaction log can be made tamper-proof by periodically signing it with a hardware security module, but that does not guarantee that the right transactions went into the log in the first place. It would be interesting to use cryptographic tools to prove the integrity of a system in a way that is robust to a wide range of hardware and software issues, and even poten‐ tially malicious actions. Cryptocurrencies, blockchains, and distributed ledger tech‐ nologies such as Bitcoin, Ethereum, Ripple, Stellar, and various others [71, 72, 73] have sprung up to explore this area. I am not qualified to comment on the merits of these technologies as currencies or mechanisms for agreeing contracts. However, from a data systems point of view they contain some interesting ideas. Essentially, they are distributed databases, with a data model and transaction mechanism, in which different replicas can be hosted by mutually untrusting organizations.

The opposite of bounded. 558 | Glossary Index A aborts (transactions), 222, 224 in two-phase commit, 356 performance of optimistic concurrency con‐ trol, 266 retrying aborted transactions, 231 abstraction, 21, 27, 222, 266, 321 access path (in network model), 37, 60 accidental complexity, removing, 21 accountability, 535 ACID properties (transactions), 90, 223 atomicity, 223, 228 consistency, 224, 529 durability, 226 isolation, 225, 228 acknowledgements (messaging), 445 active/active replication (see multi-leader repli‐ cation) active/passive replication (see leader-based rep‐ lication) ActiveMQ (messaging), 137, 444 distributed transaction support, 361 ActiveRecord (object-relational mapper), 30, 232 actor model, 138 (see also message-passing) comparison to Pregel model, 425 comparison to stream processing, 468 Advanced Message Queuing Protocol (see AMQP) aerospace systems, 6, 10, 305, 372 aggregation data cubes and materialized views, 101 in batch processes, 406 in stream processes, 466 aggregation pipeline query language, 48 Agile, 22 minimizing irreversibility, 414, 497 moving faster with confidence, 532 Unix philosophy, 394 agreement, 365 (see also consensus) Airflow (workflow scheduler), 402 Ajax, 131 Akka (actor framework), 139 algorithms algorithm correctness, 308 B-trees, 79-83 for distributed systems, 306 hash indexes, 72-75 mergesort, 76, 402, 405 red-black trees, 78 SSTables and LSM-trees, 76-79 all-to-all replication topologies, 175 AllegroGraph (database), 50 ALTER TABLE statement (SQL), 40, 111 Amazon Dynamo (database), 177 Amazon Web Services (AWS), 8 Kinesis Streams (messaging), 448 network reliability, 279 postmortems, 9 RedShift (database), 93 S3 (object storage), 398 checking data integrity, 530 amplification of bias, 534 of failures, 364, 495 Index | 559 of tail latency, 16, 207 write amplification, 84 AMQP (Advanced Message Queuing Protocol), 444 (see also messaging systems) comparison to log-based messaging, 448, 451 message ordering, 446 analytics, 90 comparison to transaction processing, 91 data warehousing (see data warehousing) parallel query execution in MPP databases, 415 predictive (see predictive analytics) relation to batch processing, 411 schemas for, 93-95 snapshot isolation for queries, 238 stream analytics, 466 using MapReduce, analysis of user activity events (example), 404 anti-caching (in-memory databases), 89 anti-entropy, 178 Apache ActiveMQ (see ActiveMQ) Apache Avro (see Avro) Apache Beam (see Beam) Apache BookKeeper (see BookKeeper) Apache Cassandra (see Cassandra) Apache CouchDB (see CouchDB) Apache Curator (see Curator) Apache Drill (see Drill) Apache Flink (see Flink) Apache Giraph (see Giraph) Apache Hadoop (see Hadoop) Apache HAWQ (see HAWQ) Apache HBase (see HBase) Apache Helix (see Helix) Apache Hive (see Hive) Apache Impala (see Impala) Apache Jena (see Jena) Apache Kafka (see Kafka) Apache Lucene (see Lucene) Apache MADlib (see MADlib) Apache Mahout (see Mahout) Apache Oozie (see Oozie) Apache Parquet (see Parquet) Apache Qpid (see Qpid) Apache Samza (see Samza) Apache Solr (see Solr) Apache Spark (see Spark) 560 | Index Apache Storm (see Storm) Apache Tajo (see Tajo) Apache Tez (see Tez) Apache Thrift (see Thrift) Apache ZooKeeper (see ZooKeeper) Apama (stream analytics), 466 append-only B-trees, 82, 242 append-only files (see logs) Application Programming Interfaces (APIs), 5, 27 for batch processing, 403 for change streams, 456 for distributed transactions, 361 for graph processing, 425 for services, 131-136 (see also services) evolvability, 136 RESTful, 133 SOAP, 133 application state (see state) approximate search (see similarity search) archival storage, data from databases, 131 arcs (see edges) arithmetic mean, 14 ASCII text, 119, 395 ASN.1 (schema language), 127 asynchronous networks, 278, 553 comparison to synchronous networks, 284 formal model, 307 asynchronous replication, 154, 553 conflict detection, 172 data loss on failover, 157 reads from asynchronous follower, 162 Asynchronous Transfer Mode (ATM), 285 atomic broadcast (see total order broadcast) atomic clocks (caesium clocks), 294, 295 (see also clocks) atomicity (concurrency), 553 atomic increment-and-get, 351 compare-and-set, 245, 327 (see also compare-and-set operations) replicated operations, 246 write operations, 243 atomicity (transactions), 223, 228, 553 atomic commit, 353 avoiding, 523, 528 blocking and nonblocking, 359 in stream processing, 360, 477 maintaining derived data, 453 for multi-object transactions, 229 for single-object writes, 230 auditability, 528-533 designing for, 531 self-auditing systems, 530 through immutability, 460 tools for auditable data systems, 532 availability, 8 (see also fault tolerance) in CAP theorem, 337 in service level agreements (SLAs), 15 Avro (data format), 122-127 code generation, 127 dynamically generated schemas, 126 object container files, 125, 131, 414 reader determining writer’s schema, 125 schema evolution, 123 use in Hadoop, 414 awk (Unix tool), 391 AWS (see Amazon Web Services) Azure (see Microsoft) B B-trees (indexes), 79-83 append-only/copy-on-write variants, 82, 242 branching factor, 81 comparison to LSM-trees, 83-85 crash recovery, 82 growing by splitting a page, 81 optimizations, 82 similarity to dynamic partitioning, 212 backpressure, 441, 553 in TCP, 282 backups database snapshot for replication, 156 integrity of, 530 snapshot isolation for, 238 use for ETL processes, 405 backward compatibility, 112 BASE, contrast to ACID, 223 bash shell (Unix), 70, 395, 503 batch processing, 28, 389-431, 553 combining with stream processing lambda architecture, 497 unifying technologies, 498 comparison to MPP databases, 414-418 comparison to stream processing, 464 comparison to Unix, 413-414 dataflow engines, 421-423 fault tolerance, 406, 414, 422, 442 for data integration, 494-498 graphs and iterative processing, 424-426 high-level APIs and languages, 403, 426-429 log-based messaging and, 451 maintaining derived state, 495 MapReduce and distributed filesystems, 397-413 (see also MapReduce) measuring performance, 13, 390 outputs, 411-413 key-value stores, 412 search indexes, 411 using Unix tools (example), 391-394 Bayou (database), 522 Beam (dataflow library), 498 bias, 534 big ball of mud, 20 Bigtable data model, 41, 99 binary data encodings, 115-128 Avro, 122-127 MessagePack, 116-117 Thrift and Protocol Buffers, 117-121 binary encoding based on schemas, 127 by network drivers, 128 binary strings, lack of support in JSON and XML, 114 BinaryProtocol encoding (Thrift), 118 Bitcask (storage engine), 72 crash recovery, 74 Bitcoin (cryptocurrency), 532 Byzantine fault tolerance, 305 concurrency bugs in exchanges, 233 bitmap indexes, 97 blockchains, 532 Byzantine fault tolerance, 305 blocking atomic commit, 359 Bloom (programming language), 504 Bloom filter (algorithm), 79, 466 BookKeeper (replicated log), 372 Bottled Water (change data capture), 455 bounded datasets, 430, 439, 553 (see also batch processing) bounded delays, 553 in networks, 285 process pauses, 298 broadcast hash joins, 409 Index | 561 brokerless messaging, 442 Brubeck (metrics aggregator), 442 BTM (transaction coordinator), 356 bulk synchronous parallel (BSP) model, 425 bursty network traffic patterns, 285 business data processing, 28, 90, 390 byte sequence, encoding data in, 112 Byzantine faults, 304-306, 307, 553 Byzantine fault-tolerant systems, 305, 532 Byzantine Generals Problem, 304 consensus algorithms and, 366 C caches, 89, 553 and materialized views, 101 as derived data, 386, 499-504 database as cache of transaction log, 460 in CPUs, 99, 338, 428 invalidation and maintenance, 452, 467 linearizability, 324 CAP theorem, 336-338, 554 Cascading (batch processing), 419, 427 hash joins, 409 workflows, 403 cascading failures, 9, 214, 281 Cascalog (batch processing), 60 Cassandra (database) column-family data model, 41, 99 compaction strategy, 79 compound primary key, 204 gossip protocol, 216 hash partitioning, 203-205 last-write-wins conflict resolution, 186, 292 leaderless replication, 177 linearizability, lack of, 335 log-structured storage, 78 multi-datacenter support, 184 partitioning scheme, 213 secondary indexes, 207 sloppy quorums, 184 cat (Unix tool), 391 causal context, 191 (see also causal dependencies) causal dependencies, 186-191 capturing, 191, 342, 494, 514 by total ordering, 493 causal ordering, 339 in transactions, 262 sending message to friends (example), 494 562 | Index causality, 554 causal ordering, 339-343 linearizability and, 342 total order consistent with, 344, 345 consistency with, 344-347 consistent snapshots, 340 happens-before relationship, 186 in serializable transactions, 262-265 mismatch with clocks, 292 ordering events to capture, 493 violations of, 165, 176, 292, 340 with synchronized clocks, 294 CEP (see complex event processing) certificate transparency, 532 chain replication, 155 linearizable reads, 351 change data capture, 160, 454 API support for change streams, 456 comparison to event sourcing, 457 implementing, 454 initial snapshot, 455 log compaction, 456 changelogs, 460 change data capture, 454 for operator state, 479 generating with triggers, 455 in stream joins, 474 log compaction, 456 maintaining derived state, 452 Chaos Monkey, 7, 280 checkpointing in batch processors, 422, 426 in high-performance computing, 275 in stream processors, 477, 523 chronicle data model, 458 circuit-switched networks, 284 circular buffers, 450 circular replication topologies, 175 clickstream data, analysis of, 404 clients calling services, 131 pushing state changes to, 512 request routing, 214 stateful and offline-capable, 170, 511 clocks, 287-299 atomic (caesium) clocks, 294, 295 confidence interval, 293-295 for global snapshots, 294 logical (see logical clocks) skew, 291-294, 334 slewing, 289 synchronization and accuracy, 289-291 synchronization using GPS, 287, 290, 294, 295 time-of-day versus monotonic clocks, 288 timestamping events, 471 cloud computing, 146, 275 need for service discovery, 372 network glitches, 279 shared resources, 284 single-machine reliability, 8 Cloudera Impala (see Impala) clustered indexes, 86 CODASYL model, 36 (see also network model) code generation with Avro, 127 with Thrift and Protocol Buffers, 118 with WSDL, 133 collaborative editing multi-leader replication and, 170 column families (Bigtable), 41, 99 column-oriented storage, 95-101 column compression, 97 distinction between column families and, 99 in batch processors, 428 Parquet, 96, 131, 414 sort order in, 99-100 vectorized processing, 99, 428 writing to, 101 comma-separated values (see CSV) command query responsibility segregation (CQRS), 462 commands (event sourcing), 459 commits (transactions), 222 atomic commit, 354-355 (see also atomicity; transactions) read committed isolation, 234 three-phase commit (3PC), 359 two-phase commit (2PC), 355-359 commutative operations, 246 compaction of changelogs, 456 (see also log compaction) for stream operator state, 479 of log-structured storage, 73 issues with, 84 size-tiered and leveled approaches, 79 CompactProtocol encoding (Thrift), 119 compare-and-set operations, 245, 327 implementing locks, 370 implementing uniqueness constraints, 331 implementing with total order broadcast, 350 relation to consensus, 335, 350, 352, 374 relation to transactions, 230 compatibility, 112, 128 calling services, 136 properties of encoding formats, 139 using databases, 129-131 using message-passing, 138 compensating transactions, 355, 461, 526 complex event processing (CEP), 465 complexity distilling in theoretical models, 310 hiding using abstraction, 27 of software systems, managing, 20 composing data systems (see unbundling data‐ bases) compute-intensive applications, 3, 275 concatenated indexes, 87 in Cassandra, 204 Concord (stream processor), 466 concurrency actor programming model, 138, 468 (see also message-passing) bugs from weak transaction isolation, 233 conflict resolution, 171, 174 detecting concurrent writes, 184-191 dual writes, problems with, 453 happens-before relationship, 186 in replicated systems, 161-191, 324-338 lost updates, 243 multi-version concurrency control (MVCC), 239 optimistic concurrency control, 261 ordering of operations, 326, 341 reducing, through event logs, 351, 462, 507 time and relativity, 187 transaction isolation, 225 write skew (transaction isolation), 246-251 conflict-free replicated datatypes (CRDTs), 174 conflicts conflict detection, 172 causal dependencies, 186, 342 in consensus algorithms, 368 in leaderless replication, 184 Index | 563 in log-based systems, 351, 521 in nonlinearizable systems, 343 in serializable snapshot isolation (SSI), 264 in two-phase commit, 357, 364 conflict resolution automatic conflict resolution, 174 by aborting transactions, 261 by apologizing, 527 convergence, 172-174 in leaderless systems, 190 last write wins (LWW), 186, 292 using atomic operations, 246 using custom logic, 173 determining what is a conflict, 174, 522 in multi-leader replication, 171-175 avoiding conflicts, 172 lost updates, 242-246 materializing, 251 relation to operation ordering, 339 write skew (transaction isolation), 246-251 congestion (networks) avoidance, 282 limiting accuracy of clocks, 293 queueing delays, 282 consensus, 321, 364-375, 554 algorithms, 366-368 preventing split brain, 367 safety and liveness properties, 365 using linearizable operations, 351 cost of, 369 distributed transactions, 352-375 in practice, 360-364 two-phase commit, 354-359 XA transactions, 361-364 impossibility of, 353 membership and coordination services, 370-373 relation to compare-and-set, 335, 350, 352, 374 relation to replication, 155, 349 relation to uniqueness constraints, 521 consistency, 224, 524 across different databases, 157, 452, 462, 492 causal, 339-348, 493 consistent prefix reads, 165-167 consistent snapshots, 156, 237-242, 294, 455, 500 (see also snapshots) 564 | Index crash recovery, 82 enforcing constraints (see constraints) eventual, 162, 322 (see also eventual consistency) in ACID transactions, 224, 529 in CAP theorem, 337 linearizability, 324-338 meanings of, 224 monotonic reads, 164-165 of secondary indexes, 231, 241, 354, 491, 500 ordering guarantees, 339-352 read-after-write, 162-164 sequential, 351 strong (see linearizability) timeliness and integrity, 524 using quorums, 181, 334 consistent hashing, 204 consistent prefix reads, 165 constraints (databases), 225, 248 asynchronously checked, 526 coordination avoidance, 527 ensuring idempotence, 519 in log-based systems, 521-524 across multiple partitions, 522 in two-phase commit, 355, 357 relation to consensus, 374, 521 relation to event ordering, 347 requiring linearizability, 330 Consul (service discovery), 372 consumers (message streams), 137, 440 backpressure, 441 consumer offsets in logs, 449 failures, 445, 449 fan-out, 11, 445, 448 load balancing, 444, 448 not keeping up with producers, 441, 450, 502 context switches, 14, 297 convergence (conflict resolution), 172-174, 322 coordination avoidance, 527 cross-datacenter, 168, 493 cross-partition ordering, 256, 294, 348, 523 services, 330, 370-373 coordinator (in 2PC), 356 failure, 358 in XA transactions, 361-364 recovery, 363 copy-on-write (B-trees), 82, 242 CORBA (Common Object Request Broker Architecture), 134 correctness, 6 auditability, 528-533 Byzantine fault tolerance, 305, 532 dealing with partial failures, 274 in log-based systems, 521-524 of algorithm within system model, 308 of compensating transactions, 355 of consensus, 368 of derived data, 497, 531 of immutable data, 461 of personal data, 535, 540 of time, 176, 289-295 of transactions, 225, 515, 529 timeliness and integrity, 524-528 corruption of data detecting, 519, 530-533 due to pathological memory access, 529 due to radiation, 305 due to split brain, 158, 302 due to weak transaction isolation, 233 formalization in consensus, 366 integrity as absence of, 524 network packets, 306 on disks, 227 preventing using write-ahead logs, 82 recovering from, 414, 460 Couchbase (database) durability, 89 hash partitioning, 203-204, 211 rebalancing, 213 request routing, 216 CouchDB (database) B-tree storage, 242 change feed, 456 document data model, 31 join support, 34 MapReduce support, 46, 400 replication, 170, 173 covering indexes, 86 CPUs cache coherence and memory barriers, 338 caching and pipelining, 99, 428 increasing parallelism, 43 CRDTs (see conflict-free replicated datatypes) CREATE INDEX statement (SQL), 85, 500 credit rating agencies, 535 Crunch (batch processing), 419, 427 hash joins, 409 sharded joins, 408 workflows, 403 cryptography defense against attackers, 306 end-to-end encryption and authentication, 519, 543 proving integrity of data, 532 CSS (Cascading Style Sheets), 44 CSV (comma-separated values), 70, 114, 396 Curator (ZooKeeper recipes), 330, 371 curl (Unix tool), 135, 397 cursor stability, 243 Cypher (query language), 52 comparison to SPARQL, 59 D data corruption (see corruption of data) data cubes, 102 data formats (see encoding) data integration, 490-498, 543 batch and stream processing, 494-498 lambda architecture, 497 maintaining derived state, 495 reprocessing data, 496 unifying, 498 by unbundling databases, 499-515 comparison to federated databases, 501 combining tools by deriving data, 490-494 derived data versus distributed transac‐ tions, 492 limits of total ordering, 493 ordering events to capture causality, 493 reasoning about dataflows, 491 need for, 385 data lakes, 415 data locality (see locality) data models, 27-64 graph-like models, 49-63 Datalog language, 60-63 property graphs, 50 RDF and triple-stores, 55-59 query languages, 42-48 relational model versus document model, 28-42 data protection regulations, 542 data systems, 3 about, 4 Index | 565 concerns when designing, 5 future of, 489-544 correctness, constraints, and integrity, 515-533 data integration, 490-498 unbundling databases, 499-515 heterogeneous, keeping in sync, 452 maintainability, 18-22 possible faults in, 221 reliability, 6-10 hardware faults, 7 human errors, 9 importance of, 10 software errors, 8 scalability, 10-18 unreliable clocks, 287-299 data warehousing, 91-95, 554 comparison to data lakes, 415 ETL (extract-transform-load), 92, 416, 452 keeping data systems in sync, 452 schema design, 93 slowly changing dimension (SCD), 476 data-intensive applications, 3 database triggers (see triggers) database-internal distributed transactions, 360, 364, 477 databases archival storage, 131 comparison of message brokers to, 443 dataflow through, 129 end-to-end argument for, 519-520 checking integrity, 531 inside-out, 504 (see also unbundling databases) output from batch workflows, 412 relation to event streams, 451-464 (see also changelogs) API support for change streams, 456, 506 change data capture, 454-457 event sourcing, 457-459 keeping systems in sync, 452-453 philosophy of immutable events, 459-464 unbundling, 499-515 composing data storage technologies, 499-504 designing applications around dataflow, 504-509 566 | Index observing derived state, 509-515 datacenters geographically distributed, 145, 164, 278, 493 multi-tenancy and shared resources, 284 network architecture, 276 network faults, 279 replication across multiple, 169 leaderless replication, 184 multi-leader replication, 168, 335 dataflow, 128-139, 504-509 correctness of dataflow systems, 525 differential, 504 message-passing, 136-139 reasoning about, 491 through databases, 129 through services, 131-136 dataflow engines, 421-423 comparison to stream processing, 464 directed acyclic graphs (DAG), 424 partitioning, approach to, 429 support for declarative queries, 427 Datalog (query language), 60-63 datatypes binary strings in XML and JSON, 114 conflict-free, 174 in Avro encodings, 122 in Thrift and Protocol Buffers, 121 numbers in XML and JSON, 114 Datomic (database) B-tree storage, 242 data model, 50, 57 Datalog query language, 60 excision (deleting data), 463 languages for transactions, 255 serial execution of transactions, 253 deadlocks detection, in two-phase commit (2PC), 364 in two-phase locking (2PL), 258 Debezium (change data capture), 455 declarative languages, 42, 554 Bloom, 504 CSS and XSL, 44 Cypher, 52 Datalog, 60 for batch processing, 427 recursive SQL queries, 53 relational algebra and SQL, 42 SPARQL, 59 delays bounded network delays, 285 bounded process pauses, 298 unbounded network delays, 282 unbounded process pauses, 296 deleting data, 463 denormalization (data representation), 34, 554 costs, 39 in derived data systems, 386 materialized views, 101 updating derived data, 228, 231, 490 versus normalization, 462 derived data, 386, 439, 554 from change data capture, 454 in event sourcing, 458-458 maintaining derived state through logs, 452-457, 459-463 observing, by subscribing to streams, 512 outputs of batch and stream processing, 495 through application code, 505 versus distributed transactions, 492 deterministic operations, 255, 274, 554 accidental nondeterminism, 423 and fault tolerance, 423, 426 and idempotence, 478, 492 computing derived data, 495, 526, 531 in state machine replication, 349, 452, 458 joins, 476 DevOps, 394 differential dataflow, 504 dimension tables, 94 dimensional modeling (see star schemas) directed acyclic graphs (DAGs), 424 dirty reads (transaction isolation), 234 dirty writes (transaction isolation), 235 discrimination, 534 disks (see hard disks) distributed actor frameworks, 138 distributed filesystems, 398-399 decoupling from query engines, 417 indiscriminately dumping data into, 415 use by MapReduce, 402 distributed systems, 273-312, 554 Byzantine faults, 304-306 cloud versus supercomputing, 275 detecting network faults, 280 faults and partial failures, 274-277 formalization of consensus, 365 impossibility results, 338, 353 issues with failover, 157 limitations of distributed transactions, 363 multi-datacenter, 169, 335 network problems, 277-286 quorums, relying on, 301 reasons for using, 145, 151 synchronized clocks, relying on, 291-295 system models, 306-310 use of clocks and time, 287 distributed transactions (see transactions) Django (web framework), 232 DNS (Domain Name System), 216, 372 Docker (container manager), 506 document data model, 30-42 comparison to relational model, 38-42 document references, 38, 403 document-oriented databases, 31 many-to-many relationships and joins, 36 multi-object transactions, need for, 231 versus relational model convergence of models, 41 data locality, 41 document-partitioned indexes, 206, 217, 411 domain-driven design (DDD), 457 DRBD (Distributed Replicated Block Device), 153 drift (clocks), 289 Drill (query engine), 93 Druid (database), 461 Dryad (dataflow engine), 421 dual writes, problems with, 452, 507 duplicates, suppression of, 517 (see also idempotence) using a unique ID, 518, 522 durability (transactions), 226, 554 duration (time), 287 measurement with monotonic clocks, 288 dynamic partitioning, 212 dynamically typed languages analogy to schema-on-read, 40 code generation and, 127 Dynamo-style databases (see leaderless replica‐ tion) E edges (in graphs), 49, 403 property graph model, 50 edit distance (full-text search), 88 effectively-once semantics, 476, 516 Index | 567 (see also exactly-once semantics) preservation of integrity, 525 elastic systems, 17 Elasticsearch (search server) document-partitioned indexes, 207 partition rebalancing, 211 percolator (stream search), 467 usage example, 4 use of Lucene, 79 ElephantDB (database), 413 Elm (programming language), 504, 512 encodings (data formats), 111-128 Avro, 122-127 binary variants of JSON and XML, 115 compatibility, 112 calling services, 136 using databases, 129-131 using message-passing, 138 defined, 113 JSON, XML, and CSV, 114 language-specific formats, 113 merits of schemas, 127 representations of data, 112 Thrift and Protocol Buffers, 117-121 end-to-end argument, 277, 519-520 checking integrity, 531 publish/subscribe streams, 512 enrichment (stream), 473 Enterprise JavaBeans (EJB), 134 entities (see vertices) epoch (consensus algorithms), 368 epoch (Unix timestamps), 288 equi-joins, 403 erasure coding (error correction), 398 Erlang OTP (actor framework), 139 error handling for network faults, 280 in transactions, 231 error-correcting codes, 277, 398 Esper (CEP engine), 466 etcd (coordination service), 370-373 linearizable operations, 333 locks and leader election, 330 quorum reads, 351 service discovery, 372 use of Raft algorithm, 349, 353 Ethereum (blockchain), 532 Ethernet (networks), 276, 278, 285 packet checksums, 306, 519 568 | Index Etherpad (collaborative editor), 170 ethics, 533-543 code of ethics and professional practice, 533 legislation and self-regulation, 542 predictive analytics, 533-536 amplifying bias, 534 feedback loops, 536 privacy and tracking, 536-543 consent and freedom of choice, 538 data as assets and power, 540 meaning of privacy, 539 surveillance, 537 respect, dignity, and agency, 543, 544 unintended consequences, 533, 536 ETL (extract-transform-load), 92, 405, 452, 554 use of Hadoop for, 416 event sourcing, 457-459 commands and events, 459 comparison to change data capture, 457 comparison to lambda architecture, 497 deriving current state from event log, 458 immutability and auditability, 459, 531 large, reliable data systems, 519, 526 Event Store (database), 458 event streams (see streams) events, 440 deciding on total order of, 493 deriving views from event log, 461 difference to commands, 459 event time versus processing time, 469, 477, 498 immutable, advantages of, 460, 531 ordering to capture causality, 493 reads as, 513 stragglers, 470, 498 timestamp of, in stream processing, 471 EventSource (browser API), 512 eventual consistency, 152, 162, 308, 322 (see also conflicts) and perpetual inconsistency, 525 evolvability, 21, 111 calling services, 136 graph-structured data, 52 of databases, 40, 129-131, 461, 497 of message-passing, 138 reprocessing data, 496, 498 schema evolution in Avro, 123 schema evolution in Thrift and Protocol Buffers, 120 schema-on-read, 39, 111, 128 exactly-once semantics, 360, 476, 516 parity with batch processors, 498 preservation of integrity, 525 exclusive mode (locks), 258 eXtended Architecture transactions (see XA transactions) extract-transform-load (see ETL) F Facebook Presto (query engine), 93 React, Flux, and Redux (user interface libra‐ ries), 512 social graphs, 49 Wormhole (change data capture), 455 fact tables, 93 failover, 157, 554 (see also leader-based replication) in leaderless replication, absence of, 178 leader election, 301, 348, 352 potential problems, 157 failures amplification by distributed transactions, 364, 495 failure detection, 280 automatic rebalancing causing cascading failures, 214 perfect failure detectors, 359 timeouts and unbounded delays, 282, 284 using ZooKeeper, 371 faults versus, 7 partial failures in distributed systems, 275-277, 310 fan-out (messaging systems), 11, 445 fault tolerance, 6-10, 555 abstractions for, 321 formalization in consensus, 365-369 use of replication, 367 human fault tolerance, 414 in batch processing, 406, 414, 422, 425 in log-based systems, 520, 524-526 in stream processing, 476-479 atomic commit, 477 idempotence, 478 maintaining derived state, 495 microbatching and checkpointing, 477 rebuilding state after a failure, 478 of distributed transactions, 362-364 transaction atomicity, 223, 354-361 faults, 6 Byzantine faults, 304-306 failures versus, 7 handled by transactions, 221 handling in supercomputers and cloud computing, 275 hardware, 7 in batch processing versus distributed data‐ bases, 417 in distributed systems, 274-277 introducing deliberately, 7, 280 network faults, 279-281 asymmetric faults, 300 detecting, 280 tolerance of, in multi-leader replication, 169 software errors, 8 tolerating (see fault tolerance) federated databases, 501 fence (CPU instruction), 338 fencing (preventing split brain), 158, 302-304 generating fencing tokens, 349, 370 properties of fencing tokens, 308 stream processors writing to databases, 478, 517 Fibre Channel (networks), 398 field tags (Thrift and Protocol Buffers), 119-121 file descriptors (Unix), 395 financial data, 460 Firebase (database), 456 Flink (processing framework), 421-423 dataflow APIs, 427 fault tolerance, 422, 477, 479 Gelly API (graph processing), 425 integration of batch and stream processing, 495, 498 machine learning, 428 query optimizer, 427 stream processing, 466 flow control, 282, 441, 555 FLP result (on consensus), 353 FlumeJava (dataflow library), 403, 427 followers, 152, 555 (see also leader-based replication) foreign keys, 38, 403 forward compatibility, 112 forward decay (algorithm), 16 Index | 569 Fossil (version control system), 463 shunning (deleting data), 463 FoundationDB (database) serializable transactions, 261, 265, 364 fractal trees, 83 full table scans, 403 full-text search, 555 and fuzzy indexes, 88 building search indexes, 411 Lucene storage engine, 79 functional reactive programming (FRP), 504 functional requirements, 22 futures (asynchronous operations), 135 fuzzy search (see similarity search) G garbage collection immutability and, 463 process pauses for, 14, 296-299, 301 (see also process pauses) genome analysis, 63, 429 geographically distributed datacenters, 145, 164, 278, 493 geospatial indexes, 87 Giraph (graph processing), 425 Git (version control system), 174, 342, 463 GitHub, postmortems, 157, 158, 309 global indexes (see term-partitioned indexes) GlusterFS (distributed filesystem), 398 GNU Coreutils (Linux), 394 GoldenGate (change data capture), 161, 170, 455 (see also Oracle) Google Bigtable (database) data model (see Bigtable data model) partitioning scheme, 199, 202 storage layout, 78 Chubby (lock service), 370 Cloud Dataflow (stream processor), 466, 477, 498 (see also Beam) Cloud Pub/Sub (messaging), 444, 448 Docs (collaborative editor), 170 Dremel (query engine), 93, 96 FlumeJava (dataflow library), 403, 427 GFS (distributed file system), 398 gRPC (RPC framework), 135 MapReduce (batch processing), 390 570 | Index (see also MapReduce) building search indexes, 411 task preemption, 418 Pregel (graph processing), 425 Spanner (see Spanner) TrueTime (clock API), 294 gossip protocol, 216 government use of data, 541 GPS (Global Positioning System) use for clock synchronization, 287, 290, 294, 295 GraphChi (graph processing), 426 graphs, 555 as data models, 49-63 example of graph-structured data, 49 property graphs, 50 RDF and triple-stores, 55-59 versus the network model, 60 processing and analysis, 424-426 fault tolerance, 425 Pregel processing model, 425 query languages Cypher, 52 Datalog, 60-63 recursive SQL queries, 53 SPARQL, 59-59 Gremlin (graph query language), 50 grep (Unix tool), 392 GROUP BY clause (SQL), 406 grouping records in MapReduce, 406 handling skew, 407 H Hadoop (data infrastructure) comparison to distributed databases, 390 comparison to MPP databases, 414-418 comparison to Unix, 413-414, 499 diverse processing models in ecosystem, 417 HDFS distributed filesystem (see HDFS) higher-level tools, 403 join algorithms, 403-410 (see also MapReduce) MapReduce (see MapReduce) YARN (see YARN) happens-before relationship, 340 capturing, 187 concurrency and, 186 hard disks access patterns, 84 detecting corruption, 519, 530 faults in, 7, 227 sequential write throughput, 75, 450 hardware faults, 7 hash indexes, 72-75 broadcast hash joins, 409 partitioned hash joins, 409 hash partitioning, 203-205, 217 consistent hashing, 204 problems with hash mod N, 210 range queries, 204 suitable hash functions, 203 with fixed number of partitions, 210 HAWQ (database), 428 HBase (database) bug due to lack of fencing, 302 bulk loading, 413 column-family data model, 41, 99 dynamic partitioning, 212 key-range partitioning, 202 log-structured storage, 78 request routing, 216 size-tiered compaction, 79 use of HDFS, 417 use of ZooKeeper, 370 HDFS (Hadoop Distributed File System), 398-399 (see also distributed filesystems) checking data integrity, 530 decoupling from query engines, 417 indiscriminately dumping data into, 415 metadata about datasets, 410 NameNode, 398 use by Flink, 479 use by HBase, 212 use by MapReduce, 402 HdrHistogram (numerical library), 16 head (Unix tool), 392 head vertex (property graphs), 51 head-of-line blocking, 15 heap files (databases), 86 Helix (cluster manager), 216 heterogeneous distributed transactions, 360, 364 heuristic decisions (in 2PC), 363 Hibernate (object-relational mapper), 30 hierarchical model, 36 high availability (see fault tolerance) high-frequency trading, 290, 299 high-performance computing (HPC), 275 hinted handoff, 183 histograms, 16 Hive (query engine), 419, 427 for data warehouses, 93 HCatalog and metastore, 410 map-side joins, 409 query optimizer, 427 skewed joins, 408 workflows, 403 Hollerith machines, 390 hopping windows (stream processing), 472 (see also windows) horizontal scaling (see scaling out) HornetQ (messaging), 137, 444 distributed transaction support, 361 hot spots, 201 due to celebrities, 205 for time-series data, 203 in batch processing, 407 relieving, 205 hot standbys (see leader-based replication) HTTP, use in APIs (see services) human errors, 9, 279, 414 HyperDex (database), 88 HyperLogLog (algorithm), 466 I I/O operations, waiting for, 297 IBM DB2 (database) distributed transaction support, 361 recursive query support, 54 serializable isolation, 242, 257 XML and JSON support, 30, 42 electromechanical card-sorting machines, 390 IMS (database), 36 imperative query APIs, 46 InfoSphere Streams (CEP engine), 466 MQ (messaging), 444 distributed transaction support, 361 System R (database), 222 WebSphere (messaging), 137 idempotence, 134, 478, 555 by giving operations unique IDs, 518, 522 idempotent operations, 517 immutability advantages of, 460, 531 Index | 571 deriving state from event log, 459-464 for crash recovery, 75 in B-trees, 82, 242 in event sourcing, 457 inputs to Unix commands, 397 limitations of, 463 Impala (query engine) for data warehouses, 93 hash joins, 409 native code generation, 428 use of HDFS, 417 impedance mismatch, 29 imperative languages, 42 setting element styles (example), 45 in doubt (transaction status), 358 holding locks, 362 orphaned transactions, 363 in-memory databases, 88 durability, 227 serial transaction execution, 253 incidents cascading failures, 9 crashes due to leap seconds, 290 data corruption and financial losses due to concurrency bugs, 233 data corruption on hard disks, 227 data loss due to last-write-wins, 173, 292 data on disks unreadable, 309 deleted items reappearing, 174 disclosure of sensitive data due to primary key reuse, 157 errors in transaction serializability, 529 gigabit network interface with 1 Kb/s throughput, 311 network faults, 279 network interface dropping only inbound packets, 279 network partitions and whole-datacenter failures, 275 poor handling of network faults, 280 sending message to ex-partner, 494 sharks biting undersea cables, 279 split brain due to 1-minute packet delay, 158, 279 vibrations in server rack, 14 violation of uniqueness constraint, 529 indexes, 71, 555 and snapshot isolation, 241 as derived data, 386, 499-504 572 | Index B-trees, 79-83 building in batch processes, 411 clustered, 86 comparison of B-trees and LSM-trees, 83-85 concatenated, 87 covering (with included columns), 86 creating, 500 full-text search, 88 geospatial, 87 hash, 72-75 index-range locking, 260 multi-column, 87 partitioning and secondary indexes, 206-209, 217 secondary, 85 (see also secondary indexes) problems with dual writes, 452, 491 SSTables and LSM-trees, 76-79 updating when data changes, 452, 467 Industrial Revolution, 541 InfiniBand (networks), 285 InfiniteGraph (database), 50 InnoDB (storage engine) clustered index on primary key, 86 not preventing lost updates, 245 preventing write skew, 248, 257 serializable isolation, 257 snapshot isolation support, 239 inside-out databases, 504 (see also unbundling databases) integrating different data systems (see data integration) integrity, 524 coordination-avoiding data systems, 528 correctness of dataflow systems, 525 in consensus formalization, 365 integrity checks, 530 (see also auditing) end-to-end, 519, 531 use of snapshot isolation, 238 maintaining despite software bugs, 529 Interface Definition Language (IDL), 117, 122 intermediate state, materialization of, 420-423 internet services, systems for implementing, 275 invariants, 225 (see also constraints) inversion of control, 396 IP (Internet Protocol) unreliability of, 277 ISDN (Integrated Services Digital Network), 284 isolation (in transactions), 225, 228, 555 correctness and, 515 for single-object writes, 230 serializability, 251-266 actual serial execution, 252-256 serializable snapshot isolation (SSI), 261-266 two-phase locking (2PL), 257-261 violating, 228 weak isolation levels, 233-251 preventing lost updates, 242-246 read committed, 234-237 snapshot isolation, 237-242 iterative processing, 424-426 J Java Database Connectivity (JDBC) distributed transaction support, 361 network drivers, 128 Java Enterprise Edition (EE), 134, 356, 361 Java Message Service (JMS), 444 (see also messaging systems) comparison to log-based messaging, 448, 451 distributed transaction support, 361 message ordering, 446 Java Transaction API (JTA), 355, 361 Java Virtual Machine (JVM) bytecode generation, 428 garbage collection pauses, 296 process reuse in batch processors, 422 JavaScript in MapReduce querying, 46 setting element styles (example), 45 use in advanced queries, 48 Jena (RDF framework), 57 Jepsen (fault tolerance testing), 515 jitter (network delay), 284 joins, 555 by index lookup, 403 expressing as relational operators, 427 in relational and document databases, 34 MapReduce map-side joins, 408-410 broadcast hash joins, 409 merge joins, 410 partitioned hash joins, 409 MapReduce reduce-side joins, 403-408 handling skew, 407 sort-merge joins, 405 parallel execution of, 415 secondary indexes and, 85 stream joins, 472-476 stream-stream join, 473 stream-table join, 473 table-table join, 474 time-dependence of, 475 support in document databases, 42 JOTM (transaction coordinator), 356 JSON Avro schema representation, 122 binary variants, 115 for application data, issues with, 114 in relational databases, 30, 42 representing a résumé (example), 31 Juttle (query language), 504 K k-nearest neighbors, 429 Kafka (messaging), 137, 448 Kafka Connect (database integration), 457, 461 Kafka Streams (stream processor), 466, 467 fault tolerance, 479 leader-based replication, 153 log compaction, 456, 467 message offsets, 447, 478 request routing, 216 transaction support, 477 usage example, 4 Ketama (partitioning library), 213 key-value stores, 70 as batch process output, 412 hash indexes, 72-75 in-memory, 89 partitioning, 201-205 by hash of key, 203, 217 by key range, 202, 217 dynamic partitioning, 212 skew and hot spots, 205 Kryo (Java), 113 Kubernetes (cluster manager), 418, 506 L lambda architecture, 497 Lamport timestamps, 345 Index | 573 Large Hadron Collider (LHC), 64 last write wins (LWW), 173, 334 discarding concurrent writes, 186 problems with, 292 prone to lost updates, 246 late binding, 396 latency instability under two-phase locking, 259 network latency and resource utilization, 286 response time versus, 14 tail latency, 15, 207 leader-based replication, 152-161 (see also replication) failover, 157, 301 handling node outages, 156 implementation of replication logs change data capture, 454-457 (see also changelogs) statement-based, 158 trigger-based replication, 161 write-ahead log (WAL) shipping, 159 linearizability of operations, 333 locking and leader election, 330 log sequence number, 156, 449 read-scaling architecture, 161 relation to consensus, 367 setting up new followers, 155 synchronous versus asynchronous, 153-155 leaderless replication, 177-191 (see also replication) detecting concurrent writes, 184-191 capturing happens-before relationship, 187 happens-before relationship and concur‐ rency, 186 last write wins, 186 merging concurrently written values, 190 version vectors, 191 multi-datacenter, 184 quorums, 179-182 consistency limitations, 181-183, 334 sloppy quorums and hinted handoff, 183 read repair and anti-entropy, 178 leap seconds, 8, 290 in time-of-day clocks, 288 leases, 295 implementation with ZooKeeper, 370 574 | Index need for fencing, 302 ledgers, 460 distributed ledger technologies, 532 legacy systems, maintenance of, 18 less (Unix tool), 397 LevelDB (storage engine), 78 leveled compaction, 79 Levenshtein automata, 88 limping (partial failure), 311 linearizability, 324-338, 555 cost of, 335-338 CAP theorem, 336 memory on multi-core CPUs, 338 definition, 325-329 implementing with total order broadcast, 350 in ZooKeeper, 370 of derived data systems, 492, 524 avoiding coordination, 527 of different replication methods, 332-335 using quorums, 334 relying on, 330-332 constraints and uniqueness, 330 cross-channel timing dependencies, 331 locking and leader election, 330 stronger than causal consistency, 342 using to implement total order broadcast, 351 versus serializability, 329 LinkedIn Azkaban (workflow scheduler), 402 Databus (change data capture), 161, 455 Espresso (database), 31, 126, 130, 153, 216 Helix (cluster manager) (see Helix) profile (example), 30 reference to company entity (example), 34 Rest.li (RPC framework), 135 Voldemort (database) (see Voldemort) Linux, leap second bug, 8, 290 liveness properties, 308 LMDB (storage engine), 82, 242 load approaches to coping with, 17 describing, 11 load testing, 16 load balancing (messaging), 444 local indexes (see document-partitioned indexes) locality (data access), 32, 41, 555 in batch processing, 400, 405, 421 in stateful clients, 170, 511 in stream processing, 474, 478, 508, 522 location transparency, 134 in the actor model, 138 locks, 556 deadlock, 258 distributed locking, 301-304, 330 fencing tokens, 303 implementation with ZooKeeper, 370 relation to consensus, 374 for transaction isolation in snapshot isolation, 239 in two-phase locking (2PL), 257-261 making operations atomic, 243 performance, 258 preventing dirty writes, 236 preventing phantoms with index-range locks, 260, 265 read locks (shared mode), 236, 258 shared mode and exclusive mode, 258 in two-phase commit (2PC) deadlock detection, 364 in-doubt transactions holding locks, 362 materializing conflicts with, 251 preventing lost updates by explicit locking, 244 log sequence number, 156, 449 logic programming languages, 504 logical clocks, 293, 343, 494 for read-after-write consistency, 164 logical logs, 160 logs (data structure), 71, 556 advantages of immutability, 460 compaction, 73, 79, 456, 460 for stream operator state, 479 creating using total order broadcast, 349 implementing uniqueness constraints, 522 log-based messaging, 446-451 comparison to traditional messaging, 448, 451 consumer offsets, 449 disk space usage, 450 replaying old messages, 451, 496, 498 slow consumers, 450 using logs for message storage, 447 log-structured storage, 71-79 log-structured merge tree (see LSMtrees) replication, 152, 158-161 change data capture, 454-457 (see also changelogs) coordination with snapshot, 156 logical (row-based) replication, 160 statement-based replication, 158 trigger-based replication, 161 write-ahead log (WAL) shipping, 159 scalability limits, 493 loose coupling, 396, 419, 502 lost updates (see updates) LSM-trees (indexes), 78-79 comparison to B-trees, 83-85 Lucene (storage engine), 79 building indexes in batch processes, 411 similarity search, 88 Luigi (workflow scheduler), 402 LWW (see last write wins) M machine learning ethical considerations, 534 (see also ethics) iterative processing, 424 models derived from training data, 505 statistical and numerical algorithms, 428 MADlib (machine learning toolkit), 428 magic scaling sauce, 18 Mahout (machine learning toolkit), 428 maintainability, 18-22, 489 defined, 23 design principles for software systems, 19 evolvability (see evolvability) operability, 19 simplicity and managing complexity, 20 many-to-many relationships in document model versus relational model, 39 modeling as graphs, 49 many-to-one and many-to-many relationships, 33-36 many-to-one relationships, 34 MapReduce (batch processing), 390, 399-400 accessing external services within job, 404, 412 comparison to distributed databases designing for frequent faults, 417 diversity of processing models, 416 diversity of storage, 415 Index | 575 comparison to stream processing, 464 comparison to Unix, 413-414 disadvantages and limitations of, 419 fault tolerance, 406, 414, 422 higher-level tools, 403, 426 implementation in Hadoop, 400-403 the shuffle, 402 implementation in MongoDB, 46-48 machine learning, 428 map-side processing, 408-410 broadcast hash joins, 409 merge joins, 410 partitioned hash joins, 409 mapper and reducer functions, 399 materialization of intermediate state, 419-423 output of batch workflows, 411-413 building search indexes, 411 key-value stores, 412 reduce-side processing, 403-408 analysis of user activity events (exam‐ ple), 404 grouping records by same key, 406 handling skew, 407 sort-merge joins, 405 workflows, 402 marshalling (see encoding) massively parallel processing (MPP), 216 comparison to composing storage technolo‐ gies, 502 comparison to Hadoop, 414-418, 428 master-master replication (see multi-leader replication) master-slave replication (see leader-based repli‐ cation) materialization, 556 aggregate values, 101 conflicts, 251 intermediate state (batch processing), 420-423 materialized views, 101 as derived data, 386, 499-504 maintaining, using stream processing, 467, 475 Maven (Java build tool), 428 Maxwell (change data capture), 455 mean, 14 media monitoring, 467 median, 14 576 | Index meeting room booking (example), 249, 259, 521 membership services, 372 Memcached (caching server), 4, 89 memory in-memory databases, 88 durability, 227 serial transaction execution, 253 in-memory representation of data, 112 random bit-flips in, 529 use by indexes, 72, 77 memory barrier (CPU instruction), 338 MemSQL (database) in-memory storage, 89 read committed isolation, 236 memtable (in LSM-trees), 78 Mercurial (version control system), 463 merge joins, MapReduce map-side, 410 mergeable persistent data structures, 174 merging sorted files, 76, 402, 405 Merkle trees, 532 Mesos (cluster manager), 418, 506 message brokers (see messaging systems) message-passing, 136-139 advantages over direct RPC, 137 distributed actor frameworks, 138 evolvability, 138 MessagePack (encoding format), 116 messages exactly-once semantics, 360, 476 loss of, 442 using total order broadcast, 348 messaging systems, 440-451 (see also streams) backpressure, buffering, or dropping mes‐ sages, 441 brokerless messaging, 442 event logs, 446-451 comparison to traditional messaging, 448, 451 consumer offsets, 449 replaying old messages, 451, 496, 498 slow consumers, 450 message brokers, 443-446 acknowledgements and redelivery, 445 comparison to event logs, 448, 451 multiple consumers of same topic, 444 reliability, 442 uniqueness in log-based messaging, 522 Meteor (web framework), 456 microbatching, 477, 495 microservices, 132 (see also services) causal dependencies across services, 493 loose coupling, 502 relation to batch/stream processors, 389, 508 Microsoft Azure Service Bus (messaging), 444 Azure Storage, 155, 398 Azure Stream Analytics, 466 DCOM (Distributed Component Object Model), 134 MSDTC (transaction coordinator), 356 Orleans (see Orleans) SQL Server (see SQL Server) migrating (rewriting) data, 40, 130, 461, 497 modulus operator (%), 210 MongoDB (database) aggregation pipeline, 48 atomic operations, 243 BSON, 41 document data model, 31 hash partitioning (sharding), 203-204 key-range partitioning, 202 lack of join support, 34, 42 leader-based replication, 153 MapReduce support, 46, 400 oplog parsing, 455, 456 partition splitting, 212 request routing, 216 secondary indexes, 207 Mongoriver (change data capture), 455 monitoring, 10, 19 monotonic clocks, 288 monotonic reads, 164 MPP (see massively parallel processing) MSMQ (messaging), 361 multi-column indexes, 87 multi-leader replication, 168-177 (see also replication) handling write conflicts, 171 conflict avoidance, 172 converging toward a consistent state, 172 custom conflict resolution logic, 173 determining what is a conflict, 174 linearizability, lack of, 333 replication topologies, 175-177 use cases, 168 clients with offline operation, 170 collaborative editing, 170 multi-datacenter replication, 168, 335 multi-object transactions, 228 need for, 231 Multi-Paxos (total order broadcast), 367 multi-table index cluster tables (Oracle), 41 multi-tenancy, 284 multi-version concurrency control (MVCC), 239, 266 detecting stale MVCC reads, 263 indexes and snapshot isolation, 241 mutual exclusion, 261 (see also locks) MySQL (database) binlog coordinates, 156 binlog parsing for change data capture, 455 circular replication topology, 175 consistent snapshots, 156 distributed transaction support, 361 InnoDB storage engine (see InnoDB) JSON support, 30, 42 leader-based replication, 153 performance of XA transactions, 360 row-based replication, 160 schema changes in, 40 snapshot isolation support, 242 (see also InnoDB) statement-based replication, 159 Tungsten Replicator (multi-leader replica‐ tion), 170 conflict detection, 177 N nanomsg (messaging library), 442 Narayana (transaction coordinator), 356 NATS (messaging), 137 near-real-time (nearline) processing, 390 (see also stream processing) Neo4j (database) Cypher query language, 52 graph data model, 50 Nephele (dataflow engine), 421 netcat (Unix tool), 397 Netflix Chaos Monkey, 7, 280 Network Attached Storage (NAS), 146, 398 network model, 36 Index | 577 graph databases versus, 60 imperative query APIs, 46 Network Time Protocol (see NTP) networks congestion and queueing, 282 datacenter network topologies, 276 faults (see faults) linearizability and network delays, 338 network partitions, 279, 337 timeouts and unbounded delays, 281 next-key locking, 260 nodes (in graphs) (see vertices) nodes (processes), 556 handling outages in leader-based replica‐ tion, 156 system models for failure, 307 noisy neighbors, 284 nonblocking atomic commit, 359 nondeterministic operations accidental nondeterminism, 423 partial failures in distributed systems, 275 nonfunctional requirements, 22 nonrepeatable reads, 238 (see also read skew) normalization (data representation), 33, 556 executing joins, 39, 42, 403 foreign key references, 231 in systems of record, 386 versus denormalization, 462 NoSQL, 29, 499 transactions and, 223 Notation3 (N3), 56 npm (package manager), 428 NTP (Network Time Protocol), 287 accuracy, 289, 293 adjustments to monotonic clocks, 289 multiple server addresses, 306 numbers, in XML and JSON encodings, 114 O object-relational mapping (ORM) frameworks, 30 error handling and aborted transactions, 232 unsafe read-modify-write cycle code, 244 object-relational mismatch, 29 observer pattern, 506 offline systems, 390 (see also batch processing) 578 | Index stateful, offline-capable clients, 170, 511 offline-first applications, 511 offsets consumer offsets in partitioned logs, 449 messages in partitioned logs, 447 OLAP (online analytic processing), 91, 556 data cubes, 102 OLTP (online transaction processing), 90, 556 analytics queries versus, 411 workload characteristics, 253 one-to-many relationships, 30 JSON representation, 32 online systems, 389 (see also services) Oozie (workflow scheduler), 402 OpenAPI (service definition format), 133 OpenStack Nova (cloud infrastructure) use of ZooKeeper, 370 Swift (object storage), 398 operability, 19 operating systems versus databases, 499 operation identifiers, 518, 522 operational transformation, 174 operators, 421 flow of data between, 424 in stream processing, 464 optimistic concurrency control, 261 Oracle (database) distributed transaction support, 361 GoldenGate (change data capture), 161, 170, 455 lack of serializability, 226 leader-based replication, 153 multi-table index cluster tables, 41 not preventing write skew, 248 partitioned indexes, 209 PL/SQL language, 255 preventing lost updates, 245 read committed isolation, 236 Real Application Clusters (RAC), 330 recursive query support, 54 snapshot isolation support, 239, 242 TimesTen (in-memory database), 89 WAL-based replication, 160 XML support, 30 ordering, 339-352 by sequence numbers, 343-348 causal ordering, 339-343 partial order, 341 limits of total ordering, 493 total order broadcast, 348-352 Orleans (actor framework), 139 outliers (response time), 14 Oz (programming language), 504 P package managers, 428, 505 packet switching, 285 packets corruption of, 306 sending via UDP, 442 PageRank (algorithm), 49, 424 paging (see virtual memory) ParAccel (database), 93 parallel databases (see massively parallel pro‐ cessing) parallel execution of graph analysis algorithms, 426 queries in MPP databases, 216 Parquet (data format), 96, 131 (see also column-oriented storage) use in Hadoop, 414 partial failures, 275, 310 limping, 311 partial order, 341 partitioning, 199-218, 556 and replication, 200 in batch processing, 429 multi-partition operations, 514 enforcing constraints, 522 secondary index maintenance, 495 of key-value data, 201-205 by key range, 202 skew and hot spots, 205 rebalancing partitions, 209-214 automatic or manual rebalancing, 213 problems with hash mod N, 210 using dynamic partitioning, 212 using fixed number of partitions, 210 using N partitions per node, 212 replication and, 147 request routing, 214-216 secondary indexes, 206-209 document-based partitioning, 206 term-based partitioning, 208 serial execution of transactions and, 255 Paxos (consensus algorithm), 366 ballot number, 368 Multi-Paxos (total order broadcast), 367 percentiles, 14, 556 calculating efficiently, 16 importance of high percentiles, 16 use in service level agreements (SLAs), 15 Percona XtraBackup (MySQL tool), 156 performance describing, 13 of distributed transactions, 360 of in-memory databases, 89 of linearizability, 338 of multi-leader replication, 169 perpetual inconsistency, 525 pessimistic concurrency control, 261 phantoms (transaction isolation), 250 materializing conflicts, 251 preventing, in serializability, 259 physical clocks (see clocks) pickle (Python), 113 Pig (dataflow language), 419, 427 replicated joins, 409 skewed joins, 407 workflows, 403 Pinball (workflow scheduler), 402 pipelined execution, 423 in Unix, 394 point in time, 287 polyglot persistence, 29 polystores, 501 PostgreSQL (database) BDR (multi-leader replication), 170 causal ordering of writes, 177 Bottled Water (change data capture), 455 Bucardo (trigger-based replication), 161, 173 distributed transaction support, 361 foreign data wrappers, 501 full text search support, 490 leader-based replication, 153 log sequence number, 156 MVCC implementation, 239, 241 PL/pgSQL language, 255 PostGIS geospatial indexes, 87 preventing lost updates, 245 preventing write skew, 248, 261 read committed isolation, 236 recursive query support, 54 representing graphs, 51 Index | 579 serializable snapshot isolation (SSI), 261 snapshot isolation support, 239, 242 WAL-based replication, 160 XML and JSON support, 30, 42 pre-splitting, 212 Precision Time Protocol (PTP), 290 predicate locks, 259 predictive analytics, 533-536 amplifying bias, 534 ethics of (see ethics) feedback loops, 536 preemption of datacenter resources, 418 of threads, 298 Pregel processing model, 425 primary keys, 85, 556 compound primary key (Cassandra), 204 primary-secondary replication (see leaderbased replication) privacy, 536-543 consent and freedom of choice, 538 data as assets and power, 540 deleting data, 463 ethical considerations (see ethics) legislation and self-regulation, 542 meaning of, 539 surveillance, 537 tracking behavioral data, 536 probabilistic algorithms, 16, 466 process pauses, 295-299 processing time (of events), 469 producers (message streams), 440 programming languages dataflow languages, 504 for stored procedures, 255 functional reactive programming (FRP), 504 logic programming, 504 Prolog (language), 61 (see also Datalog) promises (asynchronous operations), 135 property graphs, 50 Cypher query language, 52 Protocol Buffers (data format), 117-121 field tags and schema evolution, 120 provenance of data, 531 publish/subscribe model, 441 publishers (message streams), 440 punch card tabulating machines, 390 580 | Index pure functions, 48 putting computation near data, 400 Q Qpid (messaging), 444 quality of service (QoS), 285 Quantcast File System (distributed filesystem), 398 query languages, 42-48 aggregation pipeline, 48 CSS and XSL, 44 Cypher, 52 Datalog, 60 Juttle, 504 MapReduce querying, 46-48 recursive SQL queries, 53 relational algebra and SQL, 42 SPARQL, 59 query optimizers, 37, 427 queueing delays (networks), 282 head-of-line blocking, 15 latency and response time, 14 queues (messaging), 137 quorums, 179-182, 556 for leaderless replication, 179 in consensus algorithms, 368 limitations of consistency, 181-183, 334 making decisions in distributed systems, 301 monitoring staleness, 182 multi-datacenter replication, 184 relying on durability, 309 sloppy quorums and hinted handoff, 183 R R-trees (indexes), 87 RabbitMQ (messaging), 137, 444 leader-based replication, 153 race conditions, 225 (see also concurrency) avoiding with linearizability, 331 caused by dual writes, 452 dirty writes, 235 in counter increments, 235 lost updates, 242-246 preventing with event logs, 462, 507 preventing with serializable isolation, 252 write skew, 246-251 Raft (consensus algorithm), 366 sensitivity to network problems, 369 term number, 368 use in etcd, 353 RAID (Redundant Array of Independent Disks), 7, 398 railways, schema migration on, 496 RAMCloud (in-memory storage), 89 ranking algorithms, 424 RDF (Resource Description Framework), 57 querying with SPARQL, 59 RDMA (Remote Direct Memory Access), 276 read committed isolation level, 234-237 implementing, 236 multi-version concurrency control (MVCC), 239 no dirty reads, 234 no dirty writes, 235 read path (derived data), 509 read repair (leaderless replication), 178 for linearizability, 335 read replicas (see leader-based replication) read skew (transaction isolation), 238, 266 as violation of causality, 340 read-after-write consistency, 163, 524 cross-device, 164 read-modify-write cycle, 243 read-scaling architecture, 161 reads as events, 513 real-time collaborative editing, 170 near-real-time processing, 390 (see also stream processing) publish/subscribe dataflow, 513 response time guarantees, 298 time-of-day clocks, 288 rebalancing partitions, 209-214, 556 (see also partitioning) automatic or manual rebalancing, 213 dynamic partitioning, 212 fixed number of partitions, 210 fixed number of partitions per node, 212 problems with hash mod N, 210 recency guarantee, 324 recommendation engines batch process outputs, 412 batch workflows, 403, 420 iterative processing, 424 statistical and numerical algorithms, 428 records, 399 events in stream processing, 440 recursive common table expressions (SQL), 54 redelivery (messaging), 445 Redis (database) atomic operations, 243 durability, 89 Lua scripting, 255 single-threaded execution, 253 usage example, 4 redundancy hardware components, 7 of derived data, 386 (see also derived data) Reed–Solomon codes (error correction), 398 refactoring, 22 (see also evolvability) regions (partitioning), 199 register (data structure), 325 relational data model, 28-42 comparison to document model, 38-42 graph queries in SQL, 53 in-memory databases with, 89 many-to-one and many-to-many relation‐ ships, 33 multi-object transactions, need for, 231 NoSQL as alternative to, 29 object-relational mismatch, 29 relational algebra and SQL, 42 versus document model convergence of models, 41 data locality, 41 relational databases eventual consistency, 162 history, 28 leader-based replication, 153 logical logs, 160 philosophy compared to Unix, 499, 501 schema changes, 40, 111, 130 statement-based replication, 158 use of B-tree indexes, 80 relationships (see edges) reliability, 6-10, 489 building a reliable system from unreliable components, 276 defined, 6, 22 hardware faults, 7 human errors, 9 importance of, 10 of messaging systems, 442 Index | 581 software errors, 8 Remote Method Invocation (Java RMI), 134 remote procedure calls (RPCs), 134-136 (see also services) based on futures, 135 data encoding and evolution, 136 issues with, 134 using Avro, 126, 135 using Thrift, 135 versus message brokers, 137 repeatable reads (transaction isolation), 242 replicas, 152 replication, 151-193, 556 and durability, 227 chain replication, 155 conflict resolution and, 246 consistency properties, 161-167 consistent prefix reads, 165 monotonic reads, 164 reading your own writes, 162 in distributed filesystems, 398 leaderless, 177-191 detecting concurrent writes, 184-191 limitations of quorum consistency, 181-183, 334 sloppy quorums and hinted handoff, 183 monitoring staleness, 182 multi-leader, 168-177 across multiple datacenters, 168, 335 handling write conflicts, 171-175 replication topologies, 175-177 partitioning and, 147, 200 reasons for using, 145, 151 single-leader, 152-161 failover, 157 implementation of replication logs, 158-161 relation to consensus, 367 setting up new followers, 155 synchronous versus asynchronous, 153-155 state machine replication, 349, 452 using erasure coding, 398 with heterogeneous data systems, 453 replication logs (see logs) reprocessing data, 496, 498 (see also evolvability) from log-based messaging, 451 request routing, 214-216 582 | Index approaches to, 214 parallel query execution, 216 resilient systems, 6 (see also fault tolerance) response time as performance metric for services, 13, 389 guarantees on, 298 latency versus, 14 mean and percentiles, 14 user experience, 15 responsibility and accountability, 535 REST (Representational State Transfer), 133 (see also services) RethinkDB (database) document data model, 31 dynamic partitioning, 212 join support, 34, 42 key-range partitioning, 202 leader-based replication, 153 subscribing to changes, 456 Riak (database) Bitcask storage engine, 72 CRDTs, 174, 191 dotted version vectors, 191 gossip protocol, 216 hash partitioning, 203-204, 211 last-write-wins conflict resolution, 186 leaderless replication, 177 LevelDB storage engine, 78 linearizability, lack of, 335 multi-datacenter support, 184 preventing lost updates across replicas, 246 rebalancing, 213 search feature, 209 secondary indexes, 207 siblings (concurrently written values), 190 sloppy quorums, 184 ring buffers, 450 Ripple (cryptocurrency), 532 rockets, 10, 36, 305 RocksDB (storage engine), 78 leveled compaction, 79 rollbacks (transactions), 222 rolling upgrades, 8, 112 routing (see request routing) row-oriented storage, 96 row-based replication, 160 rowhammer (memory corruption), 529 RPCs (see remote procedure calls) Rubygems (package manager), 428 rules (Datalog), 61 S safety and liveness properties, 308 in consensus algorithms, 366 in transactions, 222 sagas (see compensating transactions) Samza (stream processor), 466, 467 fault tolerance, 479 streaming SQL support, 466 sandboxes, 9 SAP HANA (database), 93 scalability, 10-18, 489 approaches for coping with load, 17 defined, 22 describing load, 11 describing performance, 13 partitioning and, 199 replication and, 161 scaling up versus scaling out, 146 scaling out, 17, 146 (see also shared-nothing architecture) scaling up, 17, 146 scatter/gather approach, querying partitioned databases, 207 SCD (slowly changing dimension), 476 schema-on-read, 39 comparison to evolvable schema, 128 in distributed filesystems, 415 schema-on-write, 39 schemaless databases (see schema-on-read) schemas, 557 Avro, 122-127 reader determining writer’s schema, 125 schema evolution, 123 dynamically generated, 126 evolution of, 496 affecting application code, 111 compatibility checking, 126 in databases, 129-131 in message-passing, 138 in service calls, 136 flexibility in document model, 39 for analytics, 93-95 for JSON and XML, 115 merits of, 127 schema migration on railways, 496 Thrift and Protocol Buffers, 117-121 schema evolution, 120 traditional approach to design, fallacy in, 462 searches building search indexes in batch processes, 411 k-nearest neighbors, 429 on streams, 467 partitioned secondary indexes, 206 secondaries (see leader-based replication) secondary indexes, 85, 557 partitioning, 206-209, 217 document-partitioned, 206 index maintenance, 495 term-partitioned, 208 problems with dual writes, 452, 491 updating, transaction isolation and, 231 secondary sorts, 405 sed (Unix tool), 392 self-describing files, 127 self-joins, 480 self-validating systems, 530 semantic web, 57 semi-synchronous replication, 154 sequence number ordering, 343-348 generators, 294, 344 insufficiency for enforcing constraints, 347 Lamport timestamps, 345 use of timestamps, 291, 295, 345 sequential consistency, 351 serializability, 225, 233, 251-266, 557 linearizability versus, 329 pessimistic versus optimistic concurrency control, 261 serial execution, 252-256 partitioning, 255 using stored procedures, 253, 349 serializable snapshot isolation (SSI), 261-266 detecting stale MVCC reads, 263 detecting writes that affect prior reads, 264 distributed execution, 265, 364 performance of SSI, 265 preventing write skew, 262-265 two-phase locking (2PL), 257-261 index-range locks, 260 performance, 258 Serializable (Java), 113 Index | 583 serialization, 113 (see also encoding) service discovery, 135, 214, 372 using DNS, 216, 372 service level agreements (SLAs), 15 service-oriented architecture (SOA), 132 (see also services) services, 131-136 microservices, 132 causal dependencies across services, 493 loose coupling, 502 relation to batch/stream processors, 389, 508 remote procedure calls (RPCs), 134-136 issues with, 134 similarity to databases, 132 web services, 132, 135 session windows (stream processing), 472 (see also windows) sessionization, 407 sharding (see partitioning) shared mode (locks), 258 shared-disk architecture, 146, 398 shared-memory architecture, 146 shared-nothing architecture, 17, 146-147, 557 (see also replication) distributed filesystems, 398 (see also distributed filesystems) partitioning, 199 use of network, 277 sharks biting undersea cables, 279 counting (example), 46-48 finding (example), 42 website about (example), 44 shredding (in relational model), 38 siblings (concurrent values), 190, 246 (see also conflicts) similarity search edit distance, 88 genome data, 63 k-nearest neighbors, 429 single-leader replication (see leader-based rep‐ lication) single-threaded execution, 243, 252 in batch processing, 406, 421, 426 in stream processing, 448, 463, 522 size-tiered compaction, 79 skew, 557 584 | Index clock skew, 291-294, 334 in transaction isolation read skew, 238, 266 write skew, 246-251, 262-265 (see also write skew) meanings of, 238 unbalanced workload, 201 compensating for, 205 due to celebrities, 205 for time-series data, 203 in batch processing, 407 slaves (see leader-based replication) sliding windows (stream processing), 472 (see also windows) sloppy quorums, 183 (see also quorums) lack of linearizability, 334 slowly changing dimension (data warehouses), 476 smearing (leap seconds adjustments), 290 snapshots (databases) causal consistency, 340 computing derived data, 500 in change data capture, 455 serializable snapshot isolation (SSI), 261-266, 329 setting up a new replica, 156 snapshot isolation and repeatable read, 237-242 implementing with MVCC, 239 indexes and MVCC, 241 visibility rules, 240 synchronized clocks for global snapshots, 294 snowflake schemas, 95 SOAP, 133 (see also services) evolvability, 136 software bugs, 8 maintaining integrity, 529 solid state drives (SSDs) access patterns, 84 detecting corruption, 519, 530 faults in, 227 sequential write throughput, 75 Solr (search server) building indexes in batch processes, 411 document-partitioned indexes, 207 request routing, 216 usage example, 4 use of Lucene, 79 sort (Unix tool), 392, 394, 395 sort-merge joins (MapReduce), 405 Sorted String Tables (see SSTables) sorting sort order in column storage, 99 source of truth (see systems of record) Spanner (database) data locality, 41 snapshot isolation using clocks, 295 TrueTime API, 294 Spark (processing framework), 421-423 bytecode generation, 428 dataflow APIs, 427 fault tolerance, 422 for data warehouses, 93 GraphX API (graph processing), 425 machine learning, 428 query optimizer, 427 Spark Streaming, 466 microbatching, 477 stream processing on top of batch process‐ ing, 495 SPARQL (query language), 59 spatial algorithms, 429 split brain, 158, 557 in consensus algorithms, 352, 367 preventing, 322, 333 using fencing tokens to avoid, 302-304 spreadsheets, dataflow programming capabili‐ ties, 504 SQL (Structured Query Language), 21, 28, 43 advantages and limitations of, 416 distributed query execution, 48 graph queries in, 53 isolation levels standard, issues with, 242 query execution on Hadoop, 416 résumé (example), 30 SQL injection vulnerability, 305 SQL on Hadoop, 93 statement-based replication, 158 stored procedures, 255 SQL Server (database) data warehousing support, 93 distributed transaction support, 361 leader-based replication, 153 preventing lost updates, 245 preventing write skew, 248, 257 read committed isolation, 236 recursive query support, 54 serializable isolation, 257 snapshot isolation support, 239 T-SQL language, 255 XML support, 30 SQLstream (stream analytics), 466 SSDs (see solid state drives) SSTables (storage format), 76-79 advantages over hash indexes, 76 concatenated index, 204 constructing and maintaining, 78 making LSM-Tree from, 78 staleness (old data), 162 cross-channel timing dependencies, 331 in leaderless databases, 178 in multi-version concurrency control, 263 monitoring for, 182 of client state, 512 versus linearizability, 324 versus timeliness, 524 standbys (see leader-based replication) star replication topologies, 175 star schemas, 93-95 similarity to event sourcing, 458 Star Wars analogy (event time versus process‐ ing time), 469 state derived from log of immutable events, 459 deriving current state from the event log, 458 interplay between state changes and appli‐ cation code, 507 maintaining derived state, 495 maintenance by stream processor in streamstream joins, 473 observing derived state, 509-515 rebuilding after stream processor failure, 478 separation of application code and, 505 state machine replication, 349, 452 statement-based replication, 158 statically typed languages analogy to schema-on-write, 40 code generation and, 127 statistical and numerical algorithms, 428 StatsD (metrics aggregator), 442 stdin, stdout, 395, 396 Stellar (cryptocurrency), 532 Index | 585 stock market feeds, 442 STONITH (Shoot The Other Node In The Head), 158 stop-the-world (see garbage collection) storage composing data storage technologies, 499-504 diversity of, in MapReduce, 415 Storage Area Network (SAN), 146, 398 storage engines, 69-104 column-oriented, 95-101 column compression, 97-99 defined, 96 distinction between column families and, 99 Parquet, 96, 131 sort order in, 99-100 writing to, 101 comparing requirements for transaction processing and analytics, 90-96 in-memory storage, 88 durability, 227 row-oriented, 70-90 B-trees, 79-83 comparing B-trees and LSM-trees, 83-85 defined, 96 log-structured, 72-79 stored procedures, 161, 253-255, 557 and total order broadcast, 349 pros and cons of, 255 similarity to stream processors, 505 Storm (stream processor), 466 distributed RPC, 468, 514 Trident state handling, 478 straggler events, 470, 498 stream processing, 464-481, 557 accessing external services within job, 474, 477, 478, 517 combining with batch processing lambda architecture, 497 unifying technologies, 498 comparison to batch processing, 464 complex event processing (CEP), 465 fault tolerance, 476-479 atomic commit, 477 idempotence, 478 microbatching and checkpointing, 477 rebuilding state after a failure, 478 for data integration, 494-498 586 | Index maintaining derived state, 495 maintenance of materialized views, 467 messaging systems (see messaging systems) reasoning about time, 468-472 event time versus processing time, 469, 477, 498 knowing when window is ready, 470 types of windows, 472 relation to databases (see streams) relation to services, 508 search on streams, 467 single-threaded execution, 448, 463 stream analytics, 466 stream joins, 472-476 stream-stream join, 473 stream-table join, 473 table-table join, 474 time-dependence of, 475 streams, 440-451 end-to-end, pushing events to clients, 512 messaging systems (see messaging systems) processing (see stream processing) relation to databases, 451-464 (see also changelogs) API support for change streams, 456 change data capture, 454-457 derivative of state by time, 460 event sourcing, 457-459 keeping systems in sync, 452-453 philosophy of immutable events, 459-464 topics, 440 strict serializability, 329 strong consistency (see linearizability) strong one-copy serializability, 329 subjects, predicates, and objects (in triplestores), 55 subscribers (message streams), 440 (see also consumers) supercomputers, 275 surveillance, 537 (see also privacy) Swagger (service definition format), 133 swapping to disk (see virtual memory) synchronous networks, 285, 557 comparison to asynchronous networks, 284 formal model, 307 synchronous replication, 154, 557 chain replication, 155 conflict detection, 172 system models, 300, 306-310 assumptions in, 528 correctness of algorithms, 308 mapping to the real world, 309 safety and liveness, 308 systems of record, 386, 557 change data capture, 454, 491 treating event log as, 460 systems thinking, 536 T t-digest (algorithm), 16 table-table joins, 474 Tableau (data visualization software), 416 tail (Unix tool), 447 tail vertex (property graphs), 51 Tajo (query engine), 93 Tandem NonStop SQL (database), 200 TCP (Transmission Control Protocol), 277 comparison to circuit switching, 285 comparison to UDP, 283 connection failures, 280 flow control, 282, 441 packet checksums, 306, 519, 529 reliability and duplicate suppression, 517 retransmission timeouts, 284 use for transaction sessions, 229 telemetry (see monitoring) Teradata (database), 93, 200 term-partitioned indexes, 208, 217 termination (consensus), 365 Terrapin (database), 413 Tez (dataflow engine), 421-423 fault tolerance, 422 support by higher-level tools, 427 thrashing (out of memory), 297 threads (concurrency) actor model, 138, 468 (see also message-passing) atomic operations, 223 background threads, 73, 85 execution pauses, 286, 296-298 memory barriers, 338 preemption, 298 single (see single-threaded execution) three-phase commit, 359 Thrift (data format), 117-121 BinaryProtocol, 118 CompactProtocol, 119 field tags and schema evolution, 120 throughput, 13, 390 TIBCO, 137 Enterprise Message Service, 444 StreamBase (stream analytics), 466 time concurrency and, 187 cross-channel timing dependencies, 331 in distributed systems, 287-299 (see also clocks) clock synchronization and accuracy, 289 relying on synchronized clocks, 291-295 process pauses, 295-299 reasoning about, in stream processors, 468-472 event time versus processing time, 469, 477, 498 knowing when window is ready, 470 timestamp of events, 471 types of windows, 472 system models for distributed systems, 307 time-dependence in stream joins, 475 time-of-day clocks, 288 timeliness, 524 coordination-avoiding data systems, 528 correctness of dataflow systems, 525 timeouts, 279, 557 dynamic configuration of, 284 for failover, 158 length of, 281 timestamps, 343 assigning to events in stream processing, 471 for read-after-write consistency, 163 for transaction ordering, 295 insufficiency for enforcing constraints, 347 key range partitioning by, 203 Lamport, 345 logical, 494 ordering events, 291, 345 Titan (database), 50 tombstones, 74, 191, 456 topics (messaging), 137, 440 total order, 341, 557 limits of, 493 sequence numbers or timestamps, 344 total order broadcast, 348-352, 493, 522 consensus algorithms and, 366-368 Index | 587 implementation in ZooKeeper and etcd, 370 implementing with linearizable storage, 351 using, 349 using to implement linearizable storage, 350 tracking behavioral data, 536 (see also privacy) transaction coordinator (see coordinator) transaction manager (see coordinator) transaction processing, 28, 90-95 comparison to analytics, 91 comparison to data warehousing, 93 transactions, 221-267, 558 ACID properties of, 223 atomicity, 223 consistency, 224 durability, 226 isolation, 225 compensating (see compensating transac‐ tions) concept of, 222 distributed transactions, 352-364 avoiding, 492, 502, 521-528 failure amplification, 364, 495 in doubt/uncertain status, 358, 362 two-phase commit, 354-359 use of, 360-361 XA transactions, 361-364 OLTP versus analytics queries, 411 purpose of, 222 serializability, 251-266 actual serial execution, 252-256 pessimistic versus optimistic concur‐ rency control, 261 serializable snapshot isolation (SSI), 261-266 two-phase locking (2PL), 257-261 single-object and multi-object, 228-232 handling errors and aborts, 231 need for multi-object transactions, 231 single-object writes, 230 snapshot isolation (see snapshots) weak isolation levels, 233-251 preventing lost updates, 242-246 read committed, 234-238 transitive closure (graph algorithm), 424 trie (data structure), 88 triggers (databases), 161, 441 implementing change data capture, 455 implementing replication, 161 588 | Index triple-stores, 55-59 SPARQL query language, 59 tumbling windows (stream processing), 472 (see also windows) in microbatching, 477 tuple spaces (programming model), 507 Turtle (RDF data format), 56 Twitter constructing home timelines (example), 11, 462, 474, 511 DistributedLog (event log), 448 Finagle (RPC framework), 135 Snowflake (sequence number generator), 294 Summingbird (processing library), 497 two-phase commit (2PC), 353, 355-359, 558 confusion with two-phase locking, 356 coordinator failure, 358 coordinator recovery, 363 how it works, 357 issues in practice, 363 performance cost, 360 transactions holding locks, 362 two-phase locking (2PL), 257-261, 329, 558 confusion with two-phase commit, 356 index-range locks, 260 performance of, 258 type checking, dynamic versus static, 40 U UDP (User Datagram Protocol) comparison to TCP, 283 multicast, 442 unbounded datasets, 439, 558 (see also streams) unbounded delays, 558 in networks, 282 process pauses, 296 unbundling databases, 499-515 composing data storage technologies, 499-504 federation versus unbundling, 501 need for high-level language, 503 designing applications around dataflow, 504-509 observing derived state, 509-515 materialized views and caching, 510 multi-partition data processing, 514 pushing state changes to clients, 512 uncertain (transaction status) (see in doubt) uniform consensus, 365 (see also consensus) uniform interfaces, 395 union type (in Avro), 125 uniq (Unix tool), 392 uniqueness constraints asynchronously checked, 526 requiring consensus, 521 requiring linearizability, 330 uniqueness in log-based messaging, 522 Unix philosophy, 394-397 command-line batch processing, 391-394 Unix pipes versus dataflow engines, 423 comparison to Hadoop, 413-414 comparison to relational databases, 499, 501 comparison to stream processing, 464 composability and uniform interfaces, 395 loose coupling, 396 pipes, 394 relation to Hadoop, 499 UPDATE statement (SQL), 40 updates preventing lost updates, 242-246 atomic write operations, 243 automatically detecting lost updates, 245 compare-and-set operations, 245 conflict resolution and replication, 246 using explicit locking, 244 preventing write skew, 246-251 V validity (consensus), 365 vBuckets (partitioning), 199 vector clocks, 191 (see also version vectors) vectorized processing, 99, 428 verification, 528-533 avoiding blind trust, 530 culture of, 530 designing for auditability, 531 end-to-end integrity checks, 531 tools for auditable data systems, 532 version control systems, reliance on immutable data, 463 version vectors, 177, 191 capturing causal dependencies, 343 versus vector clocks, 191 Vertica (database), 93 handling writes, 101 replicas using different sort orders, 100 vertical scaling (see scaling up) vertices (in graphs), 49 property graph model, 50 Viewstamped Replication (consensus algo‐ rithm), 366 view number, 368 virtual machines, 146 (see also cloud computing) context switches, 297 network performance, 282 noisy neighbors, 284 reliability in cloud services, 8 virtualized clocks in, 290 virtual memory process pauses due to page faults, 14, 297 versus memory management by databases, 89 VisiCalc (spreadsheets), 504 vnodes (partitioning), 199 Voice over IP (VoIP), 283 Voldemort (database) building read-only stores in batch processes, 413 hash partitioning, 203-204, 211 leaderless replication, 177 multi-datacenter support, 184 rebalancing, 213 reliance on read repair, 179 sloppy quorums, 184 VoltDB (database) cross-partition serializability, 256 deterministic stored procedures, 255 in-memory storage, 89 output streams, 456 secondary indexes, 207 serial execution of transactions, 253 statement-based replication, 159, 479 transactions in stream processing, 477 W WAL (write-ahead log), 82 web services (see services) Web Services Description Language (WSDL), 133 webhooks, 443 webMethods (messaging), 137 WebSocket (protocol), 512 Index | 589 windows (stream processing), 466, 468-472 infinite windows for changelogs, 467, 474 knowing when all events have arrived, 470 stream joins within a window, 473 types of windows, 472 winners (conflict resolution), 173 WITH RECURSIVE syntax (SQL), 54 workflows (MapReduce), 402 outputs, 411-414 key-value stores, 412 search indexes, 411 with map-side joins, 410 working set, 393 write amplification, 84 write path (derived data), 509 write skew (transaction isolation), 246-251 characterizing, 246-251, 262 examples of, 247, 249 materializing conflicts, 251 occurrence in practice, 529 phantoms, 250 preventing in snapshot isolation, 262-265 in two-phase locking, 259-261 options for, 248 write-ahead log (WAL), 82, 159 writes (database) atomic write operations, 243 detecting writes affecting prior reads, 264 preventing dirty writes with read commit‐ ted, 235 WS-* framework, 133 (see also services) WS-AtomicTransaction (2PC), 355 590 | Index X XA transactions, 355, 361-364 heuristic decisions, 363 limitations of, 363 xargs (Unix tool), 392, 396 XML binary variants, 115 encoding RDF data, 57 for application data, issues with, 114 in relational databases, 30, 41 XSL/XPath, 45 Y Yahoo!

Gray and Catharine van Ingen: “Empirical Measurements of Disk Failure Rates and Error Rates,” Microsoft Research, MSR-TR-2005-166, December 2005. [65] Annamalai Gurusami and Daniel Price: “Bug #73170: Duplicates in Unique Sec‐ ondary Index Because of Fix of Bug#68021,” bugs.mysql.com, July 2014. [66] Gary Fredericks: “Postgres Serializability Bug,” github.com, September 2015. [67] Xiao Chen: “HDFS DataNode Scanners and Disk Checker Explained,” blog.clou‐ dera.com, December 20, 2016. [68] Jay Kreps: “Getting Real About Distributed System Reliability,” blog.empathy‐ box.com, March 19, 2012. [69] Martin Fowler: “The LMAX Architecture,” martinfowler.com, July 12, 2011. [70] Sam Stokes: “Move Fast with Confidence,” blog.samstokes.co.uk, July 11, 2016. [71] “Sawtooth Lake Documentation,” Intel Corporation, intelledger.github.io, 2016. [72] Richard Gendal Brown: “Introducing R3 Corda™: A Distributed Ledger Designed for Financial Services,” gendal.me, April 5, 2016. [73] Trent McConaghy, Rodolphe Marques, Andreas Müller, et al.: “BigchainDB: A Scalable Blockchain Database,” bigchaindb.com, June 8, 2016. [74] Ralph C. Merkle: “A Digital Signature Based on a Conventional Encryption Function,” at CRYPTO ’87, August 1987. doi:10.1007/3-540-48184-2_32 [75] Ben Laurie: “Certificate Transparency,” ACM Queue, volume 12, number 8, pages 10-19, August 2014. doi:10.1145/2668152.2668154 Summary | 549 [76] Mark D. Ryan: “Enhanced Certificate Transparency and End-to-End Encrypted Mail,” at Network and Distributed System Security Symposium (NDSS), February 2014. doi:10.14722/ndss.2014.23379 [77] “Software Engineering Code of Ethics and Professional Practice,” Association for Computing Machinery, acm.org, 1999. [78] François Chollet: “Software development is starting to involve important ethical choices,” twitter.com, October 30, 2016. [79] Igor Perisic: “Making Hard Choices: The Quest for Ethics in Machine Learning,” engineering.linkedin.com, November 2016. [80] John Naughton: “Algorithm Writers Need a Code of Conduct,” theguar‐ dian.com, December 6, 2015. [81] Logan Kugler: “What Happens When Big Data Blunders?


pages: 589 words: 147,053

The Age of Em: Work, Love and Life When Robots Rule the Earth by Robin Hanson

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

8-hour work day, artificial general intelligence, augmented reality, Berlin Wall, bitcoin, blockchain, brain emulation, business process, Clayton Christensen, cloud computing, correlation does not imply causation, creative destruction, demographic transition, Erik Brynjolfsson, ethereum blockchain, experimental subject, fault tolerance, financial intermediation, Flynn Effect, hindsight bias, information asymmetry, job automation, job satisfaction, John Markoff, Just-in-time delivery, lone genius, Machinery of Freedom by David Friedman, market design, meta analysis, meta-analysis, Nash equilibrium, new economy, prediction markets, rent control, rent-seeking, reversible computing, risk tolerance, Silicon Valley, smart contracts, statistical model, stem cell, Thomas Malthus, trade route, Turing test, Vernor Vinge

Bureau of Labor Statistics. 2013. “Time Spent in Primary Activities and Percent of the Civilian Population Engaging in Each Activity, Averages per Day by Sex, 2012 Annual Averages.” Bureau of Labor Statistics Economic News Release. June 20. http://www.bls.gov/news.release/atus.t01.htm. Buterin, Vitalik. 2014. “White Paper: A Next-Generation Smart Contract and Decentralized Application Platform.” April. https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf. Caplan, Bryan. 2008. “The Totalitarian Threat.” In Global Catastrophic Risks, edited by Nick Bostrom and Milan Ćirković, 504–519. Oxford University Press, July 17. Caplan, Bryan, and Stephen Miller. 2010. “Intelligence Makes People Think Like Economists: Evidence from the General Social Survey.” Intelligence 38(6): 636–647. Card, Orson Scott. 2011. Elements of Fiction Writing—Characters and Viewpoint, 2nd ed.

For example, ems may adopt a metric standard for units, an English standard for language, a common law standard for law, and so on. Very secure and anonymous communications between willing parties can be arranged via “public key cryptography,” wherein each person publishes a public key for which they can prove only they know the matching private key. In addition, robust systems of secure anonymous decentralized transactions may be built on the recent innovation of block-chain based cryptographic systems, where a public record of all transactions between public key labeled accounts prevents double-spending of assets. Such systems could support digital currencies, token systems, safe wallets, registration, identity, decentralized file storage, multi-signature escrow, consensus via rewarding those who best guess a consensus, financial derivatives including insurance and bets, and more general decentralized autonomous organizations (Nakamoto 2008; Buterin 2014).


pages: 292 words: 85,151

Exponential Organizations: Why New Organizations Are Ten Times Better, Faster, and Cheaper Than Yours (And What to Do About It) by Salim Ismail, Yuri van Geest

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

23andMe, 3D printing, Airbnb, Amazon Mechanical Turk, Amazon Web Services, augmented reality, autonomous vehicles, Baxter: Rethink Robotics, bioinformatics, bitcoin, Black Swan, blockchain, Burning Man, business intelligence, business process, call centre, chief data officer, Chris Wanstrath, Clayton Christensen, clean water, cloud computing, cognitive bias, collaborative consumption, collaborative economy, commoditize, corporate social responsibility, cross-subsidies, crowdsourcing, cryptocurrency, dark matter, Dean Kamen, dematerialisation, discounted cash flows, distributed ledger, Edward Snowden, Elon Musk, en.wikipedia.org, ethereum blockchain, Galaxy Zoo, game design, Google Glasses, Google Hangouts, Google X / Alphabet X, gravity well, hiring and firing, Hyperloop, industrial robot, Innovator's Dilemma, intangible asset, Internet of things, Iridium satellite, Isaac Newton, Jeff Bezos, Kevin Kelly, Kickstarter, knowledge worker, Kodak vs Instagram, Law of Accelerating Returns, Lean Startup, life extension, lifelogging, loose coupling, loss aversion, Lyft, Marc Andreessen, Mark Zuckerberg, market design, means of production, minimum viable product, natural language processing, Netflix Prize, Network effects, new economy, Oculus Rift, offshore financial centre, p-value, PageRank, pattern recognition, Paul Graham, peer-to-peer, peer-to-peer model, Peter H. Diamandis: Planetary Resources, Peter Thiel, prediction markets, profit motive, publish or perish, Ray Kurzweil, recommendation engine, RFID, ride hailing / ride sharing, risk tolerance, Ronald Coase, Second Machine Age, self-driving car, sharing economy, Silicon Valley, skunkworks, Skype, smart contracts, Snapchat, social software, software is eating the world, speech recognition, stealth mode startup, Stephen Hawking, Steve Jobs, subscription business, supply-chain management, TaskRabbit, telepresence, telepresence robot, Tony Hsieh, transaction costs, Tyler Cowen: Great Stagnation, urban planning, WikiLeaks, winner-take-all economy, X Prize, Y Combinator, zero-sum game

In the same way that Internet communications have seen costs drop to near zero, we expect to see internal organizational and transactions costs also fall to near zero as we increasingly information-enable and distribute our organizational structures. Ultimately, in the face of such low transaction costs, we anticipate what we’re calling a Cambrian Explosion in organizational design—everything from community-based structures to virtual organizations (see Ethereum) that will be small, nimble and extensible. It is also becoming increasingly clear that, like the Internet, the ExO paradigm is not just for business. It can just as easily be applied to all sorts of enterprises and organizations, from academia to non-profits to government. In short, it is not just a system of commerce, but also a philosophy of action. For example, what would an exponential government look like?

Virtual/augmented reality Description: Avatar-quality VR available on desktop in 2-3 years. Oculus Rift, High Fidelity and Google Glass drive new applications. Implications: Remote viewing; centrally located experts serving more areas; new practice areas; remote medicine. Bitcoin and block chain Description: Trustless, ultra-low-cost secure transactions enabled by distributed ledgers that log everything. Implications: The blockchain becomes a trust engine; most third-party validation functions become automated (e.g., multi-signatory contracts, voting systems, audit practices). Micro-transactions and new payment systems become ubiquitous. Neuro-feedback Description: Use of feedback loops to bring the brain to a high level of precision. Implications: Capacity to test and deploy entirely new classes of applications (e.g., focus@will); group creativity apps; flow hacking; therapeutic aids, stress reduction and sleep improvement.


pages: 497 words: 144,283

Connectography: Mapping the Future of Global Civilization by Parag Khanna

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

1919 Motor Transport Corps convoy, 2013 Report for America's Infrastructure - American Society of Civil Engineers - 19 March 2013, 3D printing, 9 dash line, additive manufacturing, Admiral Zheng, affirmative action, agricultural Revolution, Airbnb, Albert Einstein, amateurs talk tactics, professionals talk logistics, Amazon Mechanical Turk, Asian financial crisis, asset allocation, autonomous vehicles, banking crisis, Basel III, Berlin Wall, bitcoin, Black Swan, blockchain, borderless world, Boycotts of Israel, Branko Milanovic, BRICs, British Empire, business intelligence, call centre, capital controls, charter city, clean water, cloud computing, collateralized debt obligation, commoditize, complexity theory, continuation of politics by other means, corporate governance, corporate social responsibility, credit crunch, crony capitalism, crowdsourcing, cryptocurrency, cuban missile crisis, data is the new oil, David Ricardo: comparative advantage, deglobalization, deindustrialization, dematerialisation, Deng Xiaoping, Detroit bankruptcy, digital map, diversification, Doha Development Round, edge city, Edward Snowden, Elon Musk, energy security, ethereum blockchain, European colonialism, eurozone crisis, failed state, Fall of the Berlin Wall, family office, Ferguson, Missouri, financial innovation, financial repression, fixed income, forward guidance, global supply chain, global value chain, global village, Google Earth, Hernando de Soto, high net worth, Hyperloop, ice-free Arctic, if you build it, they will come, illegal immigration, income inequality, income per capita, industrial cluster, industrial robot, informal economy, Infrastructure as a Service, interest rate swap, Intergovernmental Panel on Climate Change (IPCC), Internet of things, Isaac Newton, Jane Jacobs, Jaron Lanier, John von Neumann, Julian Assange, Just-in-time delivery, Kevin Kelly, Khyber Pass, Kibera, Kickstarter, labour market flexibility, labour mobility, LNG terminal, low cost carrier, manufacturing employment, mass affluent, mass immigration, megacity, Mercator projection, Metcalfe’s law, microcredit, mittelstand, Monroe Doctrine, mutually assured destruction, New Economic Geography, new economy, New Urbanism, off grid, offshore financial centre, oil rush, oil shale / tar sands, oil shock, openstreetmap, out of africa, Panamax, Parag Khanna, Peace of Westphalia, peak oil, Pearl River Delta, Peter Thiel, Philip Mirowski, Plutocrats, plutocrats, post-oil, post-Panamax, private military company, purchasing power parity, QWERTY keyboard, race to the bottom, Rana Plaza, rent-seeking, reserve currency, Robert Gordon, Robert Shiller, Robert Shiller, Ronald Coase, Scramble for Africa, Second Machine Age, sharing economy, Shenzhen was a fishing village, Silicon Valley, Silicon Valley startup, six sigma, Skype, smart cities, Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia, South China Sea, South Sea Bubble, sovereign wealth fund, special economic zone, spice trade, Stuxnet, supply-chain management, sustainable-tourism, TaskRabbit, telepresence, the built environment, The inhabitant of London could order by telephone, sipping his morning tea in bed, the various products of the whole earth, Tim Cook: Apple, trade route, transaction costs, UNCLOS, uranium enrichment, urban planning, urban sprawl, WikiLeaks, young professional, zero day

With the Bali Trade Facilitation Agreement of 2013, the harmonization of customs administration (cutting red tape) could add $1 trillion to world GDP and create twenty million jobs. A study undertaken by the World Economic Forum and Bain estimates that further aligning supply chain standards would boost world GDP by an enormous 5 percent, while implementation of all current WTO accords would deliver only 1 percent growth. The Ethereum blockchain platform will allow for standardized and transparent contracts between trading parties beyond any single jurisdiction and, when combined with real-time data sharing on supply chain transactions, can substantially reduce the cost of insuring trade. Open trade and open borders further reorganize the world into functional circuits. Despite widely divergent geography and wealth, Canada, Argentina, South Africa, Indonesia, Australia, and other countries coalesced into the Cairns Group to push for free trade in agriculture: They are the “farm circuit” of global trade.