first square of the chessboard / second half of the chessboard

11 results back to index


pages: 72 words: 21,361

Race Against the Machine: How the Digital Revolution Is Accelerating Innovation, Driving Productivity, and Irreversibly Transforming Employment and the Economy by Erik Brynjolfsson

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Amazon Mechanical Turk, Any sufficiently advanced technology is indistinguishable from magic, autonomous vehicles, business process, call centre, combinatorial explosion, corporate governance, creative destruction, crowdsourcing, David Ricardo: comparative advantage, easy for humans, difficult for computers, Erik Brynjolfsson, factory automation, first square of the chessboard, first square of the chessboard / second half of the chessboard, Frank Levy and Richard Murnane: The New Division of Labor, hiring and firing, income inequality, intangible asset, job automation, John Markoff, John Maynard Keynes: technological unemployment, Joseph Schumpeter, Khan Academy, Kickstarter, knowledge worker, labour mobility, Loebner Prize, low skilled workers, minimum wage unemployment, patent troll, pattern recognition, Paul Samuelson, Ray Kurzweil, rising living standards, Robert Gordon, self-driving car, shareholder value, Skype, too big to fail, Turing test, Tyler Cowen: Great Stagnation, Watson beat the top human players on Jeopardy!, wealth creators, winner-take-all economy, zero-sum game

And the inventor could still retain his head. It was as they headed into the second half of the chessboard that at least one of them got into trouble. Kurzweil’s point is that constant doubling, reflecting exponential growth, is deceptive because it is initially unremarkable. Exponential increases initially look a lot like standard linear ones, but they’re not. As time goes by—as we move into the second half of the chessboard—exponential growth confounds our intuition and expectations. It accelerates far past linear growth, yielding Everest-sized piles of rice and computers that can accomplish previously impossible tasks. So where are we in the history of business use of computers? Are we in the second half of the chessboard yet? This is an impossible question to answer precisely, of course, but a reasonable estimate yields an intriguing conclusion.

It comes from an ancient story about math made relevant to the present age by the innovator and futurist Ray Kurzweil. In one version of the story, the inventor of the game of chess shows his creation to his country’s ruler. The emperor is so delighted by the game that he allows the inventor to name his own reward. The clever man asks for a quantity of rice to be determined as follows: one grain of rice is placed on the first square of the chessboard, two grains on the second, four on the third, and so on, with each square receiving twice as many grains as the previous. The emperor agrees, thinking that this reward was too small. He eventually sees, however, that the constant doubling results in tremendously large numbers. The inventor winds up with 264-1 grains of rice, or a pile bigger than Mount Everest. In some versions of the story the emperor is so displeased at being outsmarted that he beheads the inventor.

For information about quantity discounts, email info@raceagainstthemachine.com www.RaceAgainstTheMachine.com Library of Congress Cataloging-in-Publication Data Brynjolfsson, Erik Race against the machine : how the digital revolution is accelerating innovation, driving productivity, and irreversibly transforming employment and the economy. p. cm. eISBN 978-0-9847251-0-6 1. Technological innovations – Economic Aspects. I. McAfee, Andrew. II. Title. eBooks created by www.ebookconversion.com Contents 1. Technology’s Influence on Employment and the Economy 2. Humanity and Technology on the Second Half of the Chessboard 3. Creative Destruction: The Economics of Accelerating Technology and Disappearing Jobs 4. What Is to Be Done? Prescriptions and Recommendations 5. Conclusion: The Digital Frontier 6. Acknowledgments To my parents, Ari and Marguerite Brynjolfsson, who always believed in me. To my father, David McAfee, who showed me that there’s nothing better than a job well done. Chapter 1.


pages: 344 words: 94,332

The 100-Year Life: Living and Working in an Age of Longevity by Lynda Gratton, Andrew Scott

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, Airbnb, assortative mating, carbon footprint, Clayton Christensen, collapse of Lehman Brothers, creative destruction, crowdsourcing, delayed gratification, diversification, Downton Abbey, Erik Brynjolfsson, falling living standards, financial independence, first square of the chessboard, first square of the chessboard / second half of the chessboard, future of work, gender pay gap, gig economy, Google Glasses, indoor plumbing, information retrieval, intangible asset, Isaac Newton, job satisfaction, low skilled workers, Lyft, Network effects, New Economic Geography, old age dependency ratio, pattern recognition, pension reform, Peter Thiel, Ray Kurzweil, Richard Florida, Richard Thaler, Second Machine Age, sharing economy, side project, Silicon Valley, smart cities, Stephen Hawking, Steve Jobs, The Future of Employment, women in the workforce, young professional

The inventor requested rice: one grain on the first square, two on the second, four on the third, eight on the fourth, and so on. In other words, just as computing power doubles every two years, so the number of grains of rice doubled with the move from each square. In the fable, the king soon realized that he didn’t have enough grains of rice to meet the challenge, running out before the thirtieth square (before the second half of the chessboard). To meet the inventor’s demand the king would have to provide a mountain of rice larger than Mount Everest – nearly 18.5 quintillion grains. On the first square of the chessboard there is one grain of rice, and by the 33rd square the number is 4.3 billion. The parallel with Moore’s Law is obvious. Back in 1981, Bill Gates said 640K of computer memory should be enough for anyone; thirty years later not only do computers have huge processing power, but also the increase that will happen in the next two years is enormous compared to cumulative past progress.

In his thought-provoking analysis, Silicon Valley entrepreneur Martin Ford remarks: ‘The threat to overall employment is that as creative destruction unfolds the destruction will fall primarily on labor-intensive businesses in traditional areas like retail and goods preparation while the creation will generate new businesses and industries that simply don’t hire many people.’10 In the words of MIT professors Erik Brynjolfsson and Andrew McAfee, ‘Computers and other digital advances are doing for mental power … what the steam engine and its descendants did for muscle power’.11 The second half of the chessboard In 1965, Intel’s Geoffrey E. Moore conjectured that the processing power of semi-conductors would double roughly every two years and, to date, this has been an extraordinarily accurate prediction. As a consequence of this exponential growth, ‘Second Machine Age’ proponents argue that we are now in the ‘second half of the chessboard’. This is a reference to a fable concerning a king in India who, bored with all his existing pastimes, set a challenge to his kingdom to come up with a better form of entertainment. When presented with an early form of chess, the king was so delighted he offered the inventor anything he wanted.

With the innovations associated with the dramatic increase in low-cost computational power, it is now possible to develop driverless cars. When this happens it will threaten a significant number of jobs in the logistics industry. Diagnosing medical conditions is another routine task which has required knowledge and pattern recognition skills that have to date proved beyond computers. However, yet again, the implications of the second half of the chessboard is that this is no longer the case. Famously IBM’s supercomputer Watson is now performing oncology diagnosis. As computing power increases, so the hollowing out of the labour market accelerates. Instead of being complementary to skilled labour, technological innovations begin to substitute for it. The fact that this is already happening is given credence in one recent economic study which found that the long-running increase in demand for skilled workers started to go into reverse in 2000.13 In a much-quoted study, Oxford academics Carl Frey and Michael Osborne14 calculate that a total of 47 per cent of jobs in the US are vulnerable to these forces in the next few decades – that’s 60 million jobs.


pages: 138 words: 40,787

The Silent Intelligence: The Internet of Things by Daniel Kellmereit, Daniel Obodovski

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, Airbnb, Amazon Web Services, Any sufficiently advanced technology is indistinguishable from magic, autonomous vehicles, barriers to entry, business intelligence, call centre, Clayton Christensen, cloud computing, commoditize, connected car, crowdsourcing, data acquisition, en.wikipedia.org, Erik Brynjolfsson, first square of the chessboard, first square of the chessboard / second half of the chessboard, Freestyle chess, Google X / Alphabet X, Internet of things, lifelogging, Metcalfe’s law, Network effects, Paul Graham, Ray Kurzweil, RFID, Robert Metcalfe, self-driving car, Silicon Valley, smart cities, smart grid, software as a service, Steve Jobs, web application, Y Combinator, yield management

Below is a well-known story, popularized by Ray Kurzweil and retold as we know it, that illustrates the power of exponential growth. In ancient China a man came to the emperor and demonstrated to him his invention of the game of chess. The emperor was so impressed by the brilliance of the man’s invention that he told the man to name his reward. The man asked for his reward in an amount of rice — that one grain be placed on the first square of the chessboard, two on the second, four on the third, and so on — doubling the number of grains on each subsequent square. Not being a very good mathematician, the emperor at first thought the reward to be too modest and directed his servants to fulfill the man’s request. By the time the rice grains filled the first half of the chessboard, the man had more than four billion rice grains — or about the harvest of one rice field.

By the time the servants got to the sixty-fourth square, the man had more than eighteen quintillion rice grains (18 x 1018), or more than all the wealth in the land. But his wealth and ability to outsmart the emperor came with a price — he ended up being decapitated. In their recent book, Race Against the Machine,1 Erik Brynjolfsson and Andrew McAfee, referenced the fable of the chess and rice grains to make the point that “exponential increases initially look a lot like linear, but they are not. As time goes by — as we move into the second half of the chessboard — exponential growth confounds our intuition and expectations.” As a result, in the early stages of a project or a new technology, it’s very hard to discern whether or not something will experience exponential growth. As you will find in these next chapters, we believe this is exactly what is going to happen with the rise of the Internet of Things. If that’s the case, the next decade and beyond is not only going to be more amazing from the standpoint of new devices and services coming to our everyday lives, but we will also see a dramatic change in our lives and the way we do business.


pages: 515 words: 126,820

Blockchain Revolution: How the Technology Behind Bitcoin Is Changing Money, Business, and the World by Don Tapscott, Alex Tapscott

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Airbnb, altcoin, asset-backed security, autonomous vehicles, barriers to entry, bitcoin, blockchain, Bretton Woods, business process, Capital in the Twenty-First Century by Thomas Piketty, carbon footprint, clean water, cloud computing, cognitive dissonance, commoditize, corporate governance, corporate social responsibility, creative destruction, Credit Default Swap, crowdsourcing, cryptocurrency, disintermediation, distributed ledger, Donald Trump, double entry bookkeeping, Edward Snowden, Elon Musk, Erik Brynjolfsson, ethereum blockchain, failed state, fiat currency, financial innovation, Firefox, first square of the chessboard, first square of the chessboard / second half of the chessboard, future of work, Galaxy Zoo, George Gilder, glass ceiling, Google bus, Hernando de Soto, income inequality, informal economy, information asymmetry, intangible asset, interest rate swap, Internet of things, Jeff Bezos, jimmy wales, Kickstarter, knowledge worker, Kodak vs Instagram, Lean Startup, litecoin, Lyft, M-Pesa, Marc Andreessen, Mark Zuckerberg, Marshall McLuhan, means of production, microcredit, mobile money, money market fund, Network effects, new economy, Oculus Rift, off grid, pattern recognition, peer-to-peer, peer-to-peer lending, peer-to-peer model, performance metric, Peter Thiel, planetary scale, Ponzi scheme, prediction markets, price mechanism, Productivity paradox, QR code, quantitative easing, ransomware, Ray Kurzweil, renewable energy credits, rent-seeking, ride hailing / ride sharing, Ronald Coase, Ronald Reagan, Satoshi Nakamoto, Second Machine Age, seigniorage, self-driving car, sharing economy, Silicon Valley, Skype, smart contracts, smart grid, social graph, social software, Stephen Hawking, Steve Jobs, Steve Wozniak, Stewart Brand, supply-chain management, TaskRabbit, The Fortune at the Bottom of the Pyramid, The Nature of the Firm, The Wisdom of Crowds, transaction costs, Turing complete, Turing test, Uber and Lyft, unbanked and underbanked, underbanked, unorthodox policies, wealth creators, X Prize, Y2K, Zipcar

Interview with Gavin Andresen, June 8, 2015. 71. www3.weforum.org/docs/WEF_GAC15_Technological_Tipping_Points_report_2015.pdf, 7. 72. Interview with Constance Choi, April 10, 2015. 73. The digital revolution has moved on to “the second half of the chessboard”—a clever phrase coined by the American inventor and author Ray Kurzweil. He tells a story of the emperor of China being so delighted with the game of chess that he offered the game’s inventor any reward he desired. The inventor asked for rice. “I would like one grain of rice on the first square of the chessboard, two grains of rice on the second square, four grains of rice on the third square, and so on, all the way to the last square,” he said. Thinking this would add up to a couple bags of rice, the emperor happily agreed. He was misguided.

In previous epochal transitions, societies took action to implement new understandings, laws, and institutions. These transformations of civilization took time, usually centuries, and were often punctuated by strife or even revolutions. Today the situation is different. Change is happening infinitely faster. More important, Moore’s law indicates that the rate of change is accelerating exponentially. We’re moving to the proverbial “second half of the chessboard” where exponential growth upon exponential growth creates the incomprehensible.73 The upshot is that our regulatory and policy infrastructures are woefully inadequate and adapting too slowly or not at all to the requirements of the digital age. The disruptions of today are moving so fast they are getting beyond the capacity of individuals and institutions to comprehend them, let alone manage their impact.


pages: 323 words: 90,868

The Wealth of Humans: Work, Power, and Status in the Twenty-First Century by Ryan Avent

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, Airbnb, American energy revolution, assortative mating, autonomous vehicles, Bakken shale, barriers to entry, basic income, Bernie Sanders, BRICs, call centre, Capital in the Twenty-First Century by Thomas Piketty, Clayton Christensen, cloud computing, collective bargaining, computer age, creative destruction, dark matter, David Ricardo: comparative advantage, deindustrialization, dematerialisation, Deng Xiaoping, deskilling, Dissolution of the Soviet Union, Donald Trump, Downton Abbey, Edward Glaeser, Erik Brynjolfsson, eurozone crisis, everywhere but in the productivity statistics, falling living standards, first square of the chessboard, first square of the chessboard / second half of the chessboard, Ford paid five dollars a day, Francis Fukuyama: the end of history, future of work, gig economy, global supply chain, global value chain, hydraulic fracturing, income inequality, indoor plumbing, industrial robot, intangible asset, interchangeable parts, Internet of things, inventory management, invisible hand, Jacquard loom, James Watt: steam engine, Jeff Bezos, John Maynard Keynes: Economic Possibilities for our Grandchildren, Joseph-Marie Jacquard, knowledge economy, low skilled workers, lump of labour, Lyft, manufacturing employment, Marc Andreessen, mass immigration, means of production, new economy, performance metric, pets.com, price mechanism, quantitative easing, Ray Kurzweil, rent-seeking, reshoring, rising living standards, Robert Gordon, Ronald Coase, savings glut, Second Machine Age, secular stagnation, self-driving car, sharing economy, Silicon Valley, single-payer health, software is eating the world, supply-chain management, supply-chain management software, TaskRabbit, The Future of Employment, The Nature of the Firm, The Spirit Level, The Wealth of Nations by Adam Smith, Thomas Malthus, trade liberalization, transaction costs, Tyler Cowen: Great Stagnation, Uber and Lyft, Uber for X, very high income, working-age population

In an influential 2012 book, Race Against the Machine, two MIT scholars of technology and business, Erik Brynjolfsson and Andrew McAfee, argue that people aren’t very good at assessing the pace of exponential technological progress (for example, the repeated doubling in microchip power described by Moore’s law).11 They borrow a parable popularized by the futurist Ray Kurzweil.12 In the legend, a wise man invents the game of chess and presents it to his king. Pleased, the king allows the man to name his reward. The wise man responds that he wishes only modest compensation, following a simple rule. He would have one grain of rice on the first square of the chessboard, two on the second, four on the third, and so on, doubling each time for each of the sixty-four squares. The king chuckles at the apparent measliness of these amounts and says yes. It soon becomes clear that he has made quite a big mistake. After two rows the king owes nearly 33,000 grains of rice and is not chuckling quite so much. By the last square of the first half of the chessboard the amount involved is enormous, totalling more than 2 billion grains, or nearly 100,000 kg, of rice – but it is not yet absurd.

Yet on the first square of the second half the king must pay that entire sum again, and then twice that, until he owes a Mount-Everest-sized pile of rice. The tale is meant to illustrate the deceptive nature of exponential growth. Decades of progress can yield meaningfully large improvements that nonetheless fall short of transformative change. But each generation of progress is as significant as the sum of all those that came before. Around the time that the process of advance reaches the first square of the second half of the chessboard, the capacities of cutting-edge technologies become truly breathtaking: machines can suddenly drive cars, or hear and understand human speech, or look at a photograph and describe exactly what they see – advances that looked unattainable just a few years before. Those advances open up dramatic and slightly frightening new economic opportunities. And just as the very first start-ups experimenting with the very first business models based on those technologies venture into the marketplace, the next generation of technological advance lands, and adds as much new power as the industry managed to develop in every previous generation of innovation – including the one before, which brought all that scary new machine capacity.


pages: 339 words: 88,732

The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies by Erik Brynjolfsson, Andrew McAfee

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

2013 Report for America's Infrastructure - American Society of Civil Engineers - 19 March 2013, 3D printing, access to a mobile phone, additive manufacturing, Airbnb, Albert Einstein, Amazon Mechanical Turk, Amazon Web Services, American Society of Civil Engineers: Report Card, Any sufficiently advanced technology is indistinguishable from magic, autonomous vehicles, barriers to entry, basic income, Baxter: Rethink Robotics, British Empire, business intelligence, business process, call centre, Chuck Templeton: OpenTable, clean water, combinatorial explosion, computer age, computer vision, congestion charging, corporate governance, creative destruction, crowdsourcing, David Ricardo: comparative advantage, digital map, employer provided health coverage, en.wikipedia.org, Erik Brynjolfsson, factory automation, falling living standards, Filter Bubble, first square of the chessboard / second half of the chessboard, Frank Levy and Richard Murnane: The New Division of Labor, Freestyle chess, full employment, game design, global village, happiness index / gross national happiness, illegal immigration, immigration reform, income inequality, income per capita, indoor plumbing, industrial robot, informal economy, intangible asset, inventory management, James Watt: steam engine, Jeff Bezos, jimmy wales, job automation, John Markoff, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, Joseph Schumpeter, Kevin Kelly, Khan Academy, knowledge worker, Kodak vs Instagram, law of one price, low skilled workers, Lyft, Mahatma Gandhi, manufacturing employment, Marc Andreessen, Mark Zuckerberg, Mars Rover, mass immigration, means of production, Narrative Science, Nate Silver, natural language processing, Network effects, new economy, New Urbanism, Nicholas Carr, Occupy movement, oil shale / tar sands, oil shock, pattern recognition, Paul Samuelson, payday loans, price stability, Productivity paradox, profit maximization, Ralph Nader, Ray Kurzweil, recommendation engine, Report Card for America’s Infrastructure, Robert Gordon, Rodney Brooks, Ronald Reagan, Second Machine Age, self-driving car, sharing economy, Silicon Valley, Simon Kuznets, six sigma, Skype, software patent, sovereign wealth fund, speech recognition, statistical model, Steve Jobs, Steven Pinker, Stuxnet, supply-chain management, TaskRabbit, technological singularity, telepresence, The Bell Curve by Richard Herrnstein and Charles Murray, The Signal and the Noise by Nate Silver, The Wealth of Nations by Adam Smith, total factor productivity, transaction costs, Tyler Cowen: Great Stagnation, Vernor Vinge, Watson beat the top human players on Jeopardy!, winner-take-all economy, Y2K

We present this calculation here because it underscores an important idea: that exponential growth eventually leads to staggeringly big numbers, ones that leave our intuition and experience behind. In other words, things get weird in the second half of the chessboard. And like the emperor, most of us have trouble keeping up. One of the things that sets the second machine age apart is how quickly that second half of the chessboard can arrive. We’re not claiming that no other technology has ever improved exponentially. In fact, after the one-time burst of improvement in the steam engine Watt’s innovations created, additional tinkering led to exponential improvement over the ensuing two hundred years. But the exponents were relatively small, so it only went through about three or four doublings in efficiency during that period.9 It would take a millennium to reach the second half of the chessboard at that rate. In the second machine age, the doublings happen much faster and exponential growth is much more salient.

That’s a reasonable quantity—about one large field’s worth—and the emperor did start to take notice. But the emperor could still remain an emperor. And the inventor could still retain his head. It was as they headed into the second half of the chessboard that at least one of them got into trouble.8 Kurzweil’s great insight is that while numbers do get large in the first half of the chessboard, we still come across them in the real world. Four billion does not necessarily outstrip our intuition. We experience it when harvesting grain, assessing the fortunes of the world’s richest people today, or tallying up national debt levels. In the second half of the chessboard, however—as numbers mount into trillions, quadrillions, and quintillions—we lose all sense of them. We also lose sense of how quickly numbers like these appear as exponential growth continues.

David Hall, the company’s founder and CEO, estimates that mass production would allow his product’s price to “drop to the level of a camera, a few hundred dollars.”24 All these examples illustrate the first element of our three-part explanation of why we’re now in the second machine age: steady exponential improvement has brought us into the second half of the chessboard—into a time when what’s come before is no longer a particularly reliable guide to what will happen next. The accumulated doubling of Moore’s Law, and the ample doubling still to come, gives us a world where supercomputer power becomes available to toys in just a few years, where ever-cheaper sensors enable inexpensive solutions to previously intractable problems, and where science fiction keeps becoming reality. Sometimes a difference in degree (in other words, more of the same) becomes a difference in kind (in other words, different than anything else). The story of the second half of the chessboard alerts us that we should be aware that enough exponential progress can take us to astonishing places.


pages: 602 words: 177,874

Thank You for Being Late: An Optimist's Guide to Thriving in the Age of Accelerations by Thomas L. Friedman

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, additive manufacturing, affirmative action, Airbnb, AltaVista, Amazon Web Services, autonomous vehicles, Ayatollah Khomeini, barriers to entry, Berlin Wall, Bernie Sanders, bitcoin, blockchain, Bob Noyce, business process, call centre, centre right, Chris Wanstrath, Clayton Christensen, clean water, cloud computing, corporate social responsibility, creative destruction, crowdsourcing, David Brooks, demand response, demographic dividend, demographic transition, Deng Xiaoping, Donald Trump, Erik Brynjolfsson, failed state, Fall of the Berlin Wall, Ferguson, Missouri, first square of the chessboard / second half of the chessboard, Flash crash, game design, gig economy, global supply chain, illegal immigration, immigration reform, income inequality, indoor plumbing, intangible asset, Intergovernmental Panel on Climate Change (IPCC), Internet of things, invention of the steam engine, inventory management, Irwin Jacobs: Qualcomm, Jeff Bezos, job automation, John Markoff, John von Neumann, Khan Academy, Kickstarter, knowledge economy, knowledge worker, land tenure, linear programming, Live Aid, low skilled workers, Lyft, Marc Andreessen, Mark Zuckerberg, mass immigration, Maui Hawaii, Menlo Park, Mikhail Gorbachev, mutually assured destruction, pattern recognition, planetary scale, pull request, Ralph Waldo Emerson, ransomware, Ray Kurzweil, Richard Florida, ride hailing / ride sharing, Robert Gordon, Ronald Reagan, Second Machine Age, self-driving car, shareholder value, sharing economy, Silicon Valley, Skype, smart cities, South China Sea, Steve Jobs, supercomputer in your pocket, TaskRabbit, Thomas L Friedman, transaction costs, Transnistria, urban decay, urban planning, Watson beat the top human players on Jeopardy!, WikiLeaks, women in the workforce, Y2K, Yogi Berra, zero-sum game

The king agreed, noted Brynjolfsson and McAfee—without realizing that sixty-three instances of doubling yields a fantastically big number: something like eighteen quintillion grains of rice. That is the power of exponential change. When you keep doubling something for fifty years you start to get to some very big numbers, and eventually you start to see some very funky things that you have never seen before. The authors argued that Moore’s law just entered the “second half of the chessboard,” where the doubling has gotten so big and fast we’re starting to see stuff that is fundamentally different in power and capability from anything we have seen before—self-driving cars, computers that can think on their own and beat any human in chess or Jeopardy! or even Go, a 2,500-year-old board game considered vastly more complicated than chess. That is what happens “when the rate of change and the acceleration of the rate of change both increase at the same time,” said McAfee, and “we haven’t seen anything yet!”

That is what happens “when the rate of change and the acceleration of the rate of change both increase at the same time,” said McAfee, and “we haven’t seen anything yet!” So, at one level, my view of the Machine today is built on the shoulders of Brynjolfsson and McAfee’s fundamental insight into how the steady acceleration in Moore’s law has affected technology—but I think the Machine today is even more complicated. That’s because it’s not just pure technological change that has hit the second half of the chessboard. It is also two other giant forces: accelerations in the Market and in Mother Nature. “The Market” is my shorthand for the acceleration of globalization. That is, global flows of commerce, finance, credit, social networks, and connectivity generally are weaving markets, media, central banks, companies, schools, communities, and individuals more tightly together than ever. The resulting flows of information and knowledge are making the world not only interconnected and hyperconnected but interdependent—everyone everywhere is now more vulnerable to the actions of anyone anywhere.

The PS3 fits underneath a television, runs off a normal power socket, and you can buy one for under two hundred [pounds]. Within a decade, a computer able to process 1.8 teraflops went from being something that could only be made by the world’s richest government for purposes at the furthest reaches of computational possibility, to something a teenager could reasonably expect to find under the Christmas tree. Now that Moore’s law has entered the second half of the chessboard, how much farther can it go? A microchip, or chip, as we said, is made up of transistors, which are tiny switches; these switches are connected by tiny copper wires that act like pipes through which electrons flow. The way a chip operates is that you push electrons as fast as possible through many copper wires on a single chip. When you send electrons from one transistor to another, you are sending a signal to turn a given switch on and off and thus perform some kind of computing function or calculation.


pages: 504 words: 126,835

The Innovation Illusion: How So Little Is Created by So Many Working So Hard by Fredrik Erixon, Bjorn Weigel

Airbnb, Albert Einstein, asset allocation, autonomous vehicles, barriers to entry, Basel III, Bernie Madoff, bitcoin, Black Swan, blockchain, BRICs, Burning Man, Capital in the Twenty-First Century by Thomas Piketty, Cass Sunstein, Clayton Christensen, Colonization of Mars, commoditize, corporate governance, corporate social responsibility, creative destruction, crony capitalism, dark matter, David Graeber, David Ricardo: comparative advantage, discounted cash flows, distributed ledger, Donald Trump, Elon Musk, Erik Brynjolfsson, fear of failure, first square of the chessboard / second half of the chessboard, Francis Fukuyama: the end of history, George Gilder, global supply chain, global value chain, Google Glasses, Google X / Alphabet X, Gordon Gekko, high net worth, hiring and firing, Hyman Minsky, income inequality, income per capita, index fund, industrial robot, Internet of things, Jeff Bezos, job automation, job satisfaction, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, joint-stock company, Joseph Schumpeter, Just-in-time delivery, Kevin Kelly, knowledge economy, labour market flexibility, laissez-faire capitalism, lump of labour, Lyft, manufacturing employment, Mark Zuckerberg, market design, Martin Wolf, mass affluent, means of production, Mont Pelerin Society, Network effects, new economy, offshore financial centre, pensions crisis, Peter Thiel, Potemkin village, price mechanism, principal–agent problem, Productivity paradox, QWERTY keyboard, RAND corporation, Ray Kurzweil, rent-seeking, risk tolerance, risk/return, Robert Gordon, Ronald Coase, Ronald Reagan, savings glut, Second Machine Age, secular stagnation, Silicon Valley, Silicon Valley startup, Skype, sovereign wealth fund, Steve Ballmer, Steve Jobs, Steve Wozniak, technological singularity, telemarketer, The Chicago School, The Future of Employment, The Nature of the Firm, The Wealth of Nations by Adam Smith, too big to fail, total factor productivity, transaction costs, transportation-network company, tulip mania, Tyler Cowen: Great Stagnation, University of East Anglia, unpaid internship, Vanguard fund, Yogi Berra

., “Job Satisfaction.” 4.Blanchflower and Oswald, “Well-Being, Insecurity, and the Decline of American Job Satisfaction.” 5.Crabtree, “Worldwide, 13% of Employees Are Engaged at Work.” 6.Dreyer and Hindley, “Trade in Information Technology Goods.” 7.The Economist, “Planet of the Phones.” 8.Bogost, “The Secret History of the Robot Car.” 9.The “second half of the chessboard” is an expression by Ray Kurzweil to explain the power of exponential growth. Legend has it that when the inventor of chess presented the game to the emperor of India and was offered to choose a reward, he asked for one grain of rice on the first square, two on the second, four on the third, and so one. The emperor found the request modest but accepted it. It was not until they got to the second half of the chessboard that the emperor realised where it would end. At the sixty-fourth square, the pile of rise equaled the size of Mount Everest. 10.Nietzsche, Thus Spoke Zarathustra, 41. 11.Levy, Love and Sex with Robots. 12.Holley, “Apple Co-founder on Artificial Intelligence.” 13.Romm, “Americans Are More Afraid of Robots Than Death.” 14.Smith and Anderson, “AI, Robotics, and the Future of Jobs.” 15.This section on Stafford Beer and Project Cybersyn builds on Medina, Cybernetic Revolutionaries. 16.Medina, Cybernetic Revolutionaries, 25. 17.Morozov, “The Planning Machine.” 18.Huebner, “A Possible Declining Trend for Worldwide Innovation,” 985. 19.Taleb, Antifragile. 20.Kelly, “The New Socialism.” 21.Mason, Postcapitalism. 22.The Economist, “Caught in the Net.” 23.Gilder, Microcosm. 24.Carswell, The End of Politics and the Birth of iDemocracy. 25.Fukuyama, The End of History, 98–108. 26.Kaminsky, “Iran’s Twitter Revolution.” 27.Nixon, “Lack of Innovation Leaves EU Trailing.” 28.OECD, “Territorial Review: Stockholm, Sweden 2006.” 29.Legrain, European Spring, 367. 30.Gordon, “Secular Stagnation.” 31.Gage, “The Venture Capital Secret.” 32.Marmer et al., “Startup Genome Report Extra,” 10. 33.Schumpeter’s vision of capitalism is explained in Schumpeter, The Theory of Economic Development and, in a different way, in Schumpeter, Capitalism, Socialism, and Democracy. 34.For a discerning analysis of the similarities between Marx and Schumpeter, see Elliott, “Marx and Schumpeter on Capitalism’s Creative Destruction.” 35.Schumpeter, Capitalism, Socialism, and Democracy (1992), 61. 36.To avoid repetition in the book we will use terms like contestable innovation, big innovation, radical innovation, or game-changing innovation to describe the same phenomenon: innovation that contests markets. 37.Mokyr, “Long-Term Economic Growth and the History of Technology,” 4. 38.Broadberry et al., British Economic Growth. 39.Clark, A Farewell to Alms, 1. 40.Phelps, Mass Flourishing. 41.Our version of modern capitalism and its birth draws on several scholars such as Gregory Clark, David Landes, Joel Mokyr, and Edmund Phelps.

If you suffer from rheumatoid arthritis, you can implant SetPoint’s nerve stimulator and download the tablet app to manage it. If you are worried about colon cancer, you no longer have to wait for an appointment with a cancer specialist: you can use PillCam’s digestive tract sensor to screen for it. Electronic devices will soon be able to communicate with each other and perform everyday services in real time, without our command or even knowledge. Data, like money, never sleeps. When it reaches the “second half of the chessboard,”9 to use a phrase from techno-futurists, the exponential growth of computer capacity can disrupt life, technology, and markets far faster than in the past. Experts quarrel about the exact date, but in a few decades they say we will reach the point of technological singularity. That is when artificial intelligence (AI) will outsmart human intelligence. Robots will then not just beat us at chess but recursively improve themselves and constantly develop their own skills in a way that humans can no longer control.

(Matt Taibbi) (i) Roosevelt, Theodore (i) Roy, Avik (i) Rubin, Robert (i), (ii), (iii) Russia and BRIC concept (i), (ii) S&P 500 firms, unutilized cash balances (i) Saffire, “Middle Aged Blues Boogie” (i) Santos, F.M. (i)n17 savings aggregate (i) corporate (cash hoarding) (i), (ii), (iii), (iv), (v) retirement (i), (ii), (iii), (iv), (v), (vi), (vii) Schmidt, Eric (i) Schumpeter, Joseph (i), (ii), (iii), (iv) Schumpeterian innovation (i), (ii) “scientific civilization” thinking, and planning (i) scientific research (i) see also R&D; research Scrooge character (i) “second half of the chessboard” (Ray Kurzweil) (i) Second Machine Age, The (Brynjolfsson and McAfee) (i), (ii) Second World countries, and globalization (i) Seinfeld (TV series) Art Vandelay and “importer-exporter” conversation (i), (ii) “Art Vandelay logistics operation” (i) self-driving vehicles see driverless vehicles self-regulation (i) Sellers, Peter (i) Servan-Schreiber, Jean-Jacques, Le Défi américain (The American Challenge) (i) services and globalization (i) and market contestability (i), (ii) and second unbundling of production (i) see also online services “servicification” (or “servitization”) (i), (ii) SetPoint nerve stimulator (i) shale gas, and regulation in Europe (i) shareholders (i), (ii), (iii), (iv), (v), (vi), (vii) shares buybacks (i), (ii), (iii), (iv) share/stock structures (i) see also stock markets Shelley, Percy Bysshe, Prometheus Unbound (i) shipping containers (i) short-termism (i) Sidecar (i) SIFIs (systemically important financial institutions) (i) Silicon Valley (i), (ii), (iii) silo curse (i) Silvia, John (i) Simons, Bright (i) Simphal, Thibaud (i) Sinclair, Clive (i) Sinn, Hans-Werner, “bazaar economy” (i) size see corporate size skill deficiencies, and productivity (i) Skype (i), (ii) Slyngstad, Yngve (i) smartphones (i), (ii), (iii), (iv) Smith, Adam economy of specialization (i) labor and wealth (i) “man of system” (i) The Wealth of Nations (i), (ii) Smiths, The (rock band), “hang the DJ” lyric (i) social democratic vision (i) social regulation (i), (ii) socialism and bureaucracy (i) and community-generated content (i) corporate socialism (i), (ii) and Cybersyn project (i) and death of capitalism utopia (i) and labor vs. work (i) market socialism (i) and open source technology (i) socialist planning (i) and Swedish hybrid economy (i) Söderberg, Hjalmar (i) software technology, and regulation (i) Sombart, Werner (i) Sony (i), (ii), (iii), (iv), (v) sourdough production, history of (i) South Africa, taxi services and regulation (i) South Korea “Asian Tiger” (i) R&D spending (i) Sovereign Wealth Fund Institute (i) sovereign wealth funds (SWFs) (i), (ii), (iii) “Soviet–Harvard illusion” (Nassim Nicholas Taleb) (i) space flights, commercial (i) SpaceX (i) Spain biofuels regulation (i) and diffusion of innovations (i) and globalization (i) left-wing populism (i) lesser dependence on larger enterprises (i) pensions (i) public debt (i) taxi services and regulation (i) specialization and corporate control (i) and creative destruction (i) and deregulation (i) and firm boundaries (i), (ii), (iii), (iv), (v) and globalization (i), (ii), (iii), (iv), (v), (vi), (vii) and innovation (i), (ii), (iii), (iv) and organization (i) and sunk costs (i), (ii) vertical (i), (ii) speech codes, in universities (i) staff turnover rates, and economic dynamism (i) Stanford University (i), (ii) Star Trek (TV series) (i) start-ups (i), (ii), (iii), (iv), (v) Startup Genome Report (i) statistics see recorded data (national accounts) Statoil (i) Stein, Gertrude, “there is no there there” quote (i) Stern, Ariel Dora (i) stock markets changing role of (i) and corporate politics (i) post-financial crisis growth (i) and sovereign wealth funds (i) see also shareholders; shares stockholding periods (i), (ii), (iii) strategic management (i) strategic planning (i) strategy, and managerialism (i) Stratos pacemaker (i) subprime mortgage crisis (US) (i) see also financial crisis (2007) subsidies domestic companies (i) US firms (i) sunk costs (i), (ii), (iii), (iv) Sunstein, Cass (i) supply chains fragmentation of (i), (ii), (iii), (iv), (v), (vi), (vii) German-Central European supply chain (i), (ii) globalization of (i), (ii) and market concentration (i) marketization of (i) and multinationals (i) and Nokia (i) outsourcing of (i) and private standards (i) see also value chains Sweden corporate renewal levels (i) economic situation: 1970s–1980s (i); globalization and post-financial crisis (i) productivity and incomes (i) services and globalization (i) sourdough hotel (Stockholm) (i) state telecommunication monopoly and mobile technology (i) SWFs (sovereign wealth funds) (i), (ii), (iii) SWOT analyses (i) systemically important financial institutions (SIFIs) (i) Tabarrok, Alex (i) tablets (i), (ii) Taibbi, Matt, “Why Isn’t Wall Street in Jail?”


pages: 464 words: 116,945

Seventeen Contradictions and the End of Capitalism by David Harvey

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

accounting loophole / creative accounting, bitcoin, Branko Milanovic, Bretton Woods, BRICs, British Empire, business climate, California gold rush, call centre, central bank independence, clean water, cloud computing, collapse of Lehman Brothers, colonial rule, creative destruction, Credit Default Swap, David Ricardo: comparative advantage, deindustrialization, demographic dividend, Deng Xiaoping, deskilling, drone strike, end world poverty, falling living standards, fiat currency, first square of the chessboard, first square of the chessboard / second half of the chessboard, Food sovereignty, Frank Gehry, future of work, global reserve currency, Guggenheim Bilbao, Gunnar Myrdal, income inequality, informal economy, invention of the steam engine, invisible hand, Isaac Newton, Jane Jacobs, Jarndyce and Jarndyce, John Maynard Keynes: Economic Possibilities for our Grandchildren, Joseph Schumpeter, Just-in-time delivery, knowledge worker, low skilled workers, Mahatma Gandhi, market clearing, Martin Wolf, means of production, microcredit, new economy, New Urbanism, Occupy movement, peak oil, phenotype, Plutocrats, plutocrats, Ponzi scheme, quantitative easing, rent-seeking, reserve currency, road to serfdom, Robert Gordon, Ronald Reagan, short selling, Silicon Valley, special economic zone, The Wealth of Nations by Adam Smith, Thomas Malthus, Thorstein Veblen, transaction costs, Tyler Cowen: Great Stagnation, wages for housework, Wall-E, women in the workforce, working poor, working-age population

For the first twenty years of a thirty-year mortgage the principal still owed declines very slowly. The decline then accelerates and over the last two or three years the principal diminishes very rapidly. There are a number of classic anecdotes to illustrate this quality of compounding interest and exponential growth. An Indian king wished to reward the inventor of the game of chess. The inventor asked for one grain of rice on the first square of the chessboard and that the amount be doubled from one square to the next until all the squares were covered. The king readily agreed, since it seemed a small price to pay. The trouble was that by the time it came to the twenty-first square more than a million grains were required and after the forty-first square (which required more than a trillion grains) there simply was not enough rice in the world to cover the remaining squares.

To keep to a satisfactory growth rate right now would mean finding profitable investment opportunities for an extra nearly $2 trillion compared to the ‘mere’ $6 billion that was needed in 1970. By the time 2030 rolls around, when estimates suggest the global economy should be more than $96 trillion, profitable investment opportunities of close to $3 trillion will be needed. Thereafter the numbers become astronomical. It is as if we are on the twenty-first square of the chessboard and cannot get off. It just does not look a feasible growth trajectory, at least from where we sit now. Imagined physically, the enormous expansions in physical infrastructures, in urbanisation, in workforces, in consumption and in production capacities that have occurred since the 1970s until now will have to be dwarfed into insignificance over the coming generation if the compound rate of capital accumulation is to be maintained.


pages: 696 words: 143,736

The Age of Spiritual Machines: When Computers Exceed Human Intelligence by Ray Kurzweil

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Ada Lovelace, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, Any sufficiently advanced technology is indistinguishable from magic, Buckminster Fuller, call centre, cellular automata, combinatorial explosion, complexity theory, computer age, computer vision, cosmological constant, cosmological principle, Danny Hillis, double helix, Douglas Hofstadter, Everything should be made as simple as possible, first square of the chessboard / second half of the chessboard, fudge factor, George Gilder, Gödel, Escher, Bach, I think there is a world market for maybe five computers, information retrieval, invention of movable type, Isaac Newton, iterative process, Jacquard loom, Jacquard loom, John Markoff, John von Neumann, Lao Tzu, Law of Accelerating Returns, mandelbrot fractal, Marshall McLuhan, Menlo Park, natural language processing, Norbert Wiener, optical character recognition, ought to be enough for anybody, pattern recognition, phenotype, Ralph Waldo Emerson, Ray Kurzweil, Richard Feynman, Richard Feynman, Robert Metcalfe, Schrödinger's Cat, Search for Extraterrestrial Intelligence, self-driving car, Silicon Valley, speech recognition, Steven Pinker, Stewart Brand, stochastic process, technological singularity, Ted Kaczynski, telepresence, the medium is the message, There's no reason for any individual to have a computer in his home - Ken Olsen, traveling salesman, Turing machine, Turing test, Whole Earth Review, Y2K

That’s a reasonable quantity—about one large field’s worth—and the emperor did start to take notice. But the emperor could still remain an emperor. And the inventor could still retain his head. It was as they headed into the second half of the chessboard that at least one of them got into trouble. So where do we stand now? There have been about thirty-two doublings of speed and capacity since the first operating computers were built in the 1940s. Where we stand right now is that we have finished the first half of the chessboard. And, indeed, people are starting to take notice. Now, as we head into the next century, we are heading into the second half of the chessboard. And this is where things start to get interesting. OKAY, LET ME GET THIS STRAIGHT, MY CONCEPTION AS A FERTILIZED EGG WAS LIKE THE UNIVERSE’S BIG BANG—UH, NO PUN INTENDED—THAT IS, THINGS STARTED OUT HAPPENING VERY FAST, THEN KIND OF SLOWED DOWN, AND NOW THEY’RE REAL SLOW?


pages: 578 words: 168,350

Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies by Geoffrey West

Alfred Russel Wallace, Anton Chekhov, Benoit Mandelbrot, Black Swan, British Empire, butterfly effect, carbon footprint, Cesare Marchetti: Marchetti’s constant, clean water, complexity theory, computer age, conceptual framework, continuous integration, corporate social responsibility, correlation does not imply causation, creative destruction, dark matter, Deng Xiaoping, double helix, Edward Glaeser, endogenous growth, Ernest Rutherford, first square of the chessboard, first square of the chessboard / second half of the chessboard, Frank Gehry, Geoffrey West, Santa Fe Institute, Guggenheim Bilbao, housing crisis, Index librorum prohibitorum, invention of agriculture, invention of the telephone, Isaac Newton, Jane Jacobs, Jeff Bezos, Johann Wolfgang von Goethe, John von Neumann, Kenneth Arrow, laissez-faire capitalism, life extension, Mahatma Gandhi, mandelbrot fractal, Marchetti’s constant, Masdar, megacity, Murano, Venice glass, Murray Gell-Mann, New Urbanism, Peter Thiel, profit motive, publish or perish, Ray Kurzweil, Richard Feynman, Richard Feynman, Richard Florida, Silicon Valley, smart cities, Stephen Hawking, Steve Jobs, Stewart Brand, technological singularity, The Coming Technological Singularity, The Death and Life of Great American Cities, the scientific method, too big to fail, transaction costs, urban planning, urban renewal, Vernor Vinge, Vilfredo Pareto, Von Neumann architecture, Whole Earth Catalog, Whole Earth Review, wikimedia commons, working poor

Here’s a version of the story: When the inventor of chess showed the game to the king, the ruler was so taken by it that he asked the inventor to name his reward for creating such a marvelous and challenging game. The man, who was mathematically inclined, asked the king for what seemed to be an extremely modest reward in the form of grains of rice. However, these were to be apportioned in the following manner: he would receive 1 grain of rice on the first square of the chessboard, 2 grains on the second, 4 on the third, 8 on the fourth, 16 on the fifth, and so on, doubling the amount for each progressive square. The king, though somewhat offended by such an apparently measly response to his very generous offer, reluctantly accepted the inventor’s request and ordered the treasurer to count out the grains of rice as prescribed by the inventor. However, when the treasurer had not completed the assignment by the end of the week, the king called him to task and asked him the reason for his extreme tardiness.