Infrastructure as a Service

13 results back to index


pages: 761 words: 80,914

Ansible: Up and Running: Automating Configuration Management and Deployment the Easy Way by Lorin Hochstein

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Amazon Web Services, cloud computing, continuous integration, Debian, DevOps, domain-specific language, don't repeat yourself, general-purpose programming language, Infrastructure as a Service, job automation, pull request, side project, smart transportation, web application

A typical application can include web servers, application servers, memory-based caching systems, task queues, message queues, SQL databases, NoSQL datastores, and load balancers. We also need to make sure we have the appropriate redundancies in place, so that when failures happen (and they will), our software systems will handle these failures gracefully. Then there are the secondary services that we also need to deploy and maintain, such as logging, monitoring, and analytics, as well as third-party services we need to interact with, such as infrastructure-as-a-service endpoints for managing virtual machine instances.2 You can wire up these services by hand: spinning up the servers you need, SSHing to each one, installing packages, editing config files, and so forth, but it’s a pain. It’s time-consuming, error-prone, and just plain dull to do this kind of work manually, especially around the third or fourth time. And for more complex tasks, like standing up an OpenStack cloud inside your application, doing it by hand is madness.

Our ansible.cfg file would contain these lines: [defaults] hostfile = inventory Adding Entries at Runtime with add_host and group_by Ansible will let you add hosts and groups to the inventory during the execution of a playbook. add_host The add_host module adds a host to the inventory. This module is useful if you’re using Ansible to provision new virtual machine instances inside of an infrastructure-as-a-service cloud. Why Do I Need add_host if I’m Using Dynamic Inventory? Even if you’re using dynamic inventory scripts, the add_host module is useful for scenarios where you start up new virtual machine instances and configure those instances in the same playbook. If a new host comes online while a playbook is executing, the dynamic inventory script will not pick up this new host. This is because the dynamic inventory script is executed at the beginning of the playbook, so if any new hosts are added while the playbook is executing, Ansible won’t see them.

Example 11-10. vagrant_ansible_inventory (multi-machine, with groups) # Generated by Vagrant vagrant1 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222 vagrant2 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2200 vagrant3 ansible_ssh_host=127.0.0.1 ansible_ssh_port=2201 [web] vagrant1 [task] vagrant2 [redis] vagrant3 This chapter was a quick — but I hope useful — overview on how to get the most out of combining Vagrant and Ansible. Vagrant’s Ansible provisioner supports many other options to Ansible that aren’t covered in this chapter. For more details, see the official Vagrant documentation on the Ansible provisioner. Chapter 12. Amazon EC2 Ansible has a number of features that make working with infrastructure-as-a-service (IaaS) clouds much easier. This chapter focuses on Amazon EC2 because it’s the most popular IaaS cloud and the one I know best. However, many of the concepts should transfer to other clouds supported by Ansible. The two ways Ansible supports EC2 are: A dynamic inventory plug-in for automatically populating your Ansible inventory instead of manually specifying your servers Modules that perform actions on EC2 such as creating new servers In this chapter, we’ll discuss both the EC2 dynamic inventory plug-in, as well as the EC2 modules.


The Art of Scalability: Scalable Web Architecture, Processes, and Organizations for the Modern Enterprise by Martin L. Abbott, Michael T. Fisher

always be closing, anti-pattern, barriers to entry, Bernie Madoff, business climate, business continuity plan, business intelligence, business process, call centre, cloud computing, combinatorial explosion, commoditize, Computer Numeric Control, conceptual framework, database schema, discounted cash flows, en.wikipedia.org, fault tolerance, finite state, friendly fire, hiring and firing, Infrastructure as a Service, inventory management, new economy, packet switching, performance metric, platform as a service, Ponzi scheme, RFC: Request For Comment, risk tolerance, Rubik’s Cube, Search for Extraterrestrial Intelligence, SETI@home, shareholder value, Silicon Valley, six sigma, software as a service, the scientific method, transaction costs, Vilfredo Pareto, web application, Y2K

These components include workflow management, integrated development environments, testing, deployment, and hosting. • Infrastructure as a Service (IaaS). This is the concept of offering computing infrastructure such as servers, storage, network, and bandwidth for use as necessary by clients. Amazon’s EC2 was one of the earliest offerings of this service. • Everything as a Service (XaaS or *aaS). This is the idea of being able to retrieve on demand small components or modules of software that can be pieced together to provide a new Web based application or service. Components could include retail, payments, search, security, and communications. As these concepts evolve, they will continue to refine their definitions, and subcategories are sure to develop. From Infrastructure as a Service, we have seen an explosion of Blah as a Service offerings. (Blah meaning feel free to fill in the blank with almost any word you can imagine.)

With a thorough understanding of their characteristics and uses, they can become effective weapons in your arsenal to fight the scalability war. Key Points • The term cloud has been around for decades and was used primarily in network diagrams. • The idea of the modern cloud concept was put forth by IBM in its Autonomic Computing Manifesto. • Developing alongside the idea of cloud computing was the concept of Software as a Service, Infrastructure as a Service, and many more “as a Service” concepts. • Software as a Service refers to almost any form of software that is offered in a pay as you use model. • Infrastructure as a Service is the idea of offering infrastructure such as storage, servers, network, and bandwidth in a pay as you use model. • Platform as a Service provides all the required components for developing and deploying Web applications and services. • Everything as a Service is the idea of being able to have small components that can be pieced together to provide a new service. • Grid computing as a concept has been around for almost two decades.

D EFEATING THE C ORPORATE M INDSET Defeating the Corporate Mindset Lots of companies claim that technology is a key differentiator, critical to the business, or in military lingo, a force multiplier, but the reality is that many of them, including Software as a Service (SaaS) companies, treat technology as a support service. There are two basic forms that a technology organization can take within a business. One is to be a support service where technology supports the business processes of manufacturing, sales, or any number of other business lines. The other form that technology can take within a business is to be the product for the business, such as with SaaS, infrastructure as a service (IaaS), hardware product companies, or Web 2.0 companies. Being a support service and supporting other key business processes is a fine calling. As a technologist, being the product that the business is founded around, while often more stressful, is great as well. The terms usually applied to these are cost center for the support service and profit center for the product development organizations.


pages: 90 words: 17,297

Deploying OpenStack by Ken Pepple

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Amazon Web Services, cloud computing, database schema, Infrastructure as a Service, Ruby on Rails, web application, x509 certificate

It is intended to provide the reader with a solid understanding of the OpenStack project goals, details of specific OpenStack software components, general design decisions, and detailed steps to deploy OpenStack in a few controlled scenarios. Along the way, readers would also learn common pitfalls in architecting, deploying, and implementing their cloud. Intended Audience This book assumes that the reader is familiar with public Infrastructure as a Service (IaaS) cloud offerings such as Rackspace Cloud or Amazon Web Services. In addition, it demands an understanding of Linux systems administration, such as installing servers, networking with iptables, and basic virtualization technologies. Conventions Used in This Book The following typographical conventions are used in this book: Italic Indicates new terms, URLs, email addresses, filenames, and file extensions.

In just over one year, it has gone from an idea to start collaborating to being the most talked-about project in open source. In this chapter, we will examine the project’s goals, history, and how you can participate in its future. What Is the OpenStack Project ? The OpenStack Project aims to create an open source cloud computing platform for public and private clouds aimed at scalability without complexity. Initially focusing on Infrastructure as a Service (IaaS) offerings, the project currently encompasses three components: OpenStack Compute: Software to orchestrate, manage, and offer virtual machines. The software for this is called “Nova.” OpenStack Object Store: Software for the redundant storage of static objects. The software for this is called “Swift.” OpenStack Image Service: Provides query and storage services for virtual disk images.


pages: 757 words: 193,541

The Practice of Cloud System Administration: DevOps and SRE Practices for Web Services, Volume 2 by Thomas A. Limoncelli, Strata R. Chalup, Christina J. Hogan

active measures, Amazon Web Services, anti-pattern, barriers to entry, business process, cloud computing, commoditize, continuous integration, correlation coefficient, database schema, Debian, defense in depth, delayed gratification, DevOps, domain-specific language, en.wikipedia.org, fault tolerance, finite state, Firefox, Google Glasses, information asymmetry, Infrastructure as a Service, intermodal, Internet of things, job automation, job satisfaction, load shedding, loose coupling, Malcom McLean invented shipping containers, Marc Andreessen, place-making, platform as a service, premature optimization, recommendation engine, revision control, risk tolerance, side project, Silicon Valley, software as a service, sorting algorithm, statistical model, Steven Levy, supply-chain management, Toyota Production System, web application, Yogi Berra

First printing, September 2014 Contents at a Glance Contents Preface About the Authors Introduction Part I Design: Building It Chapter 1 Designing in a Distributed World Chapter 2 Designing for Operations Chapter 3 Selecting a Service Platform Chapter 4 Application Architectures Chapter 5 Design Patterns for Scaling Chapter 6 Design Patterns for Resiliency Part II Operations: Running It Chapter 7 Operations in a Distributed World Chapter 8 DevOps Culture Chapter 9 Service Delivery: The Build Phase Chapter 10 Service Delivery: The Deployment Phase Chapter 11 Upgrading Live Services Chapter 12 Automation Chapter 13 Design Documents Chapter 14 Oncall Chapter 15 Disaster Preparedness Chapter 16 Monitoring Fundamentals Chapter 17 Monitoring Architecture and Practice Chapter 18 Capacity Planning Chapter 19 Creating KPIs Chapter 20 Operational Excellence Epilogue Part III Appendices Appendix A Assessments Appendix B The Origins and Future of Distributed Computing and Clouds Appendix C Scaling Terminology and Concepts Appendix D Templates and Examples Appendix E Recommended Reading Bibliography Index Contents Preface About the Authors Introduction Part I Design: Building It 1 Designing in a Distributed World 1.1 Visibility at Scale 1.2 The Importance of Simplicity 1.3 Composition 1.3.1 Load Balancer with Multiple Backend Replicas 1.3.2 Server with Multiple Backends 1.3.3 Server Tree 1.4 Distributed State 1.5 The CAP Principle 1.5.1 Consistency 1.5.2 Availability 1.5.3 Partition Tolerance 1.6 Loosely Coupled Systems 1.7 Speed 1.8 Summary Exercises 2 Designing for Operations 2.1 Operational Requirements 2.1.1 Configuration 2.1.2 Startup and Shutdown 2.1.3 Queue Draining 2.1.4 Software Upgrades 2.1.5 Backups and Restores 2.1.6 Redundancy 2.1.7 Replicated Databases 2.1.8 Hot Swaps 2.1.9 Toggles for Individual Features 2.1.10 Graceful Degradation 2.1.11 Access Controls and Rate Limits 2.1.12 Data Import Controls 2.1.13 Monitoring 2.1.14 Auditing 2.1.15 Debug Instrumentation 2.1.16 Exception Collection 2.1.17 Documentation for Operations 2.2 Implementing Design for Operations 2.2.1 Build Features in from the Beginning 2.2.2 Request Features as They Are Identified 2.2.3 Write the Features Yourself 2.2.4 Work with a Third-Party Vendor 2.3 Improving the Model 2.4 Summary Exercises 3 Selecting a Service Platform 3.1 Level of Service Abstraction 3.1.1 Infrastructure as a Service 3.1.2 Platform as a Service 3.1.3 Software as a Service 3.2 Type of Machine 3.2.1 Physical Machines 3.2.2 Virtual Machines 3.2.3 Containers 3.3 Level of Resource Sharing 3.3.1 Compliance 3.3.2 Privacy 3.3.3 Cost 3.3.4 Control 3.4 Colocation 3.5 Selection Strategies 3.6 Summary Exercises 4 Application Architectures 4.1 Single-Machine Web Server 4.2 Three-Tier Web Service 4.2.1 Load Balancer Types 4.2.2 Load Balancing Methods 4.2.3 Load Balancing with Shared State 4.2.4 User Identity 4.2.5 Scaling 4.3 Four-Tier Web Service 4.3.1 Frontends 4.3.2 Application Servers 4.3.3 Configuration Options 4.4 Reverse Proxy Service 4.5 Cloud-Scale Service 4.5.1 Global Load Balancer 4.5.2 Global Load Balancing Methods 4.5.3 Global Load Balancing with User-Specific Data 4.5.4 Internal Backbone 4.6 Message Bus Architectures 4.6.1 Message Bus Designs 4.6.2 Message Bus Reliability 4.6.3 Example 1: Link-Shortening Site 4.6.4 Example 2: Employee Human Resources Data Updates 4.7 Service-Oriented Architecture 4.7.1 Flexibility 4.7.2 Support 4.7.3 Best Practices 4.8 Summary Exercises 5 Design Patterns for Scaling 5.1 General Strategy 5.1.1 Identify Bottlenecks 5.1.2 Reengineer Components 5.1.3 Measure Results 5.1.4 Be Proactive 5.2 Scaling Up 5.3 The AKF Scaling Cube 5.3.1 x: Horizontal Duplication 5.3.2 y: Functional or Service Splits 5.3.3 z: Lookup-Oriented Split 5.3.4 Combinations 5.4 Caching 5.4.1 Cache Effectiveness 5.4.2 Cache Placement 5.4.3 Cache Persistence 5.4.4 Cache Replacement Algorithms 5.4.5 Cache Entry Invalidation 5.4.6 Cache Size 5.5 Data Sharding 5.6 Threading 5.7 Queueing 5.7.1 Benefits 5.7.2 Variations 5.8 Content Delivery Networks 5.9 Summary Exercises 6 Design Patterns for Resiliency 6.1 Software Resiliency Beats Hardware Reliability 6.2 Everything Malfunctions Eventually 6.2.1 MTBF in Distributed Systems 6.2.2 The Traditional Approach 6.2.3 The Distributed Computing Approach 6.3 Resiliency through Spare Capacity 6.3.1 How Much Spare Capacity 6.3.2 Load Sharing versus Hot Spares 6.4 Failure Domains 6.5 Software Failures 6.5.1 Software Crashes 6.5.2 Software Hangs 6.5.3 Query of Death 6.6 Physical Failures 6.6.1 Parts and Components 6.6.2 Machines 6.6.3 Load Balancers 6.6.4 Racks 6.6.5 Datacenters 6.7 Overload Failures 6.7.1 Traffic Surges 6.7.2 DoS and DDoS Attacks 6.7.3 Scraping Attacks 6.8 Human Error 6.9 Summary Exercises Part II Operations: Running It 7 Operations in a Distributed World 7.1 Distributed Systems Operations 7.1.1 SRE versus Traditional Enterprise IT 7.1.2 Change versus Stability 7.1.3 Defining SRE 7.1.4 Operations at Scale 7.2 Service Life Cycle 7.2.1 Service Launches 7.2.2 Service Decommissioning 7.3 Organizing Strategy for Operational Teams 7.3.1 Team Member Day Types 7.3.2 Other Strategies 7.4 Virtual Office 7.4.1 Communication Mechanisms 7.4.2 Communication Policies 7.5 Summary Exercises 8 DevOps Culture 8.1 What Is DevOps?

It does not offer an examination of specific products but rather a categorization that will help you understand the variety of offerings. Strategies for choosing between these different services are summarized at the end of the chapter. The term “cloud” is ambiguous; it means different things to different people and has been made meaningless by marketing hype. Instead, we use the following terms to be specific: • Infrastructure as a Service (IaaS): Computer and network hardware, real or virtual, ready for you to use. • Platform as a Service (PaaS): Your software running in a vendor-provided framework or stack. • Software as a Service (SaaS): An application provided as a web site. Figure 3.1 depicts the typical consumer of each service. SaaS applications are for end users and fulfill a particular market niche. PaaS provides platforms for developers.

That is, are you offered a raw machine (low abstraction) or are services provided as a high-level API that encapsulates what you need done rather than how to do it (high abstraction)? The closer you are to the raw machine, the more control you have. The higher the level of abstraction, the less you have to concern yourself with technical details of building infrastructure and the more you can focus on the application. 3.1.1 Infrastructure as a Service IaaS provides bare machines, networked and ready for you to install the operating system and your own software. The service provider provides the infrastructure so that the customer can focus on the application itself. The machines provided by the vendor are usually virtual machines but may be physical machines. The provider takes care of the infrastructure: the machines themselves, power, cooling, and networking, providing internet access, and all datacenter operations


pages: 234 words: 63,522

Puppet Essentials by Felix Frank

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

cloud computing, Debian, DevOps, domain-specific language, Infrastructure as a Service, platform as a service, web application

At this layer, you can cleanly express a new configuration that should be effective for all nodes that fill this role: class profile::heimdal_server { include heimdal class { 'ssh': restricted => true } } This is just a very rough sketch of the principles behind the Roles and Profiles pattern. Craig has put up a comprehensive description on his blog, and the design has since been adopted by many users. Taking Puppet to the cloud It's time to finally talk about the cloud, which I managed to avoid when describing the different use cases. We will focus on the Infrastructure as a Service (IaaS) paradigm. These IaaS clouds consist of a network of virtual machines connected to the Internet. Each machine runs a basic operating system, which is chosen by the administrator. If you need a Platform as a Service (PaaS) implementation, read on to learn how you can practically implement your own PaaS system on top of an IaaS cloud using Puppet. From Puppet's point of view, an IaaS cloud is not much different from a data center.

[ 206 ] Index A agents initializing, in cloud 185 resources, exporting to 141 anchor pattern about 90 URL 91 antipatterns avoiding 154, 155 apt-get command 8 arrays 15 autorequire feature 125 autoscaling feature about 198 certificates, managing 198-200 round trip times, limiting 200-202 autosigning URL 200 autosigning script 198 B backends selecting 165 URL, for online documentation 165 beaker about 105 URL 105 before metaparameter 19, 21, 24 C classes about 66 component classes, writing 73, 74 comprehensive classes, writing 71, 72 creating, with parameters 92 declaring 66, 67 defining 66, 67 definitions, nesting 82 differentiating, with defined types 69, 70 include keyword, preferring 93 parameterized classes, consequences 92, 93 class inheritance 149 cloud agents, initializing in 185 manifests, building for 187 cloud-provisioner module using 186 collectors used, for realizing resources 140, 141 component classes writing 73, 74 composite design 71 comprehensive classes writing 71, 72 configuration data structuring, in hierarchy 161, 162 containers events, passing between classes and defined types 83-85 limitations 86-89 limitations, mitigating 90 ordering 86 relationships, establishing among 83 containers, limitations anchor pattern 90 contain function 91 control structures adding, in manifest 13, 14 creates parameter 28 cron resource type 29 custom attribute 191 custom facts about 53 Facter, extending with 53-55 custom functions about 96 used, for refining custom module interface 126-128 custom module building 105 enhancing, through facts 125 implementing 106-109 interface, refining through custom functions 126-128 making, portable across platforms 128, 129 naming 106 using 106 utilities, creating for derived manifests 110 custom types 117 D data resources, converting to 172-174 data, defining in manifest consequences 159, 160 defined types about 66 creating 67-69 differentiating, with classes 69, 70 used, for exploiting array values 78-81 using 67-69 using, as macros 77, 78 using, as resource multiplexers 76 using, as resource wrappers 74, 75 dependency 20 documentation, modules 98, 99 domain-specific language (DSL) 8 dynamic configuration files templating 134 dynamic scoping 154 E enabled property 10 ensure property 10 environment.conf file 100 environment locations configuring 100, 101 environments maintaining 99, 100 modules, installing 101, 102 modules, obtaining 101, 102 used, for testing modules 104, 105 evaluation order circular dependencies, avoiding 21, 22 controlling 16 dependencies, declaring 17-20 error propagation 20 events about 23 passing, between classes and defined types 83-85 exec resource type 27 external facts using 55, 56 External Node Classifiers (ENCs) 174 F Faces 186 Facter example 62 extending, with custom facts 53-55 goals 57 systems, summarizing with 50, 51 facts URL, for documentation 125 used, for enhancing custom module 125 fact values accessing 52, 53 using 52, 53 flexibility, providing to classes about 148 class inheritance 149 inheriting class, naming 151 parameters, making safer through inheritance 151 [ 208 ] Forge modules' characteristics, identifying 130 URL 130 used, for searching modules 130 fqdn_rand function 41 fully qualified domain name (FQDN) 52 G group resource type 26 H hashes 14 Hiera arrays, handling 170-172 class parameter values, binding 167-169 configuring 163 data, storing 164 hashes, handling 170-172 lookups, defining 179 practical example 177, 178 using, in different contexts 175, 176 values, retrieving 165 values, using in manifest 165 working with simple values 166, 167 hiera_array function 170 hiera_hash function 171 hierarchy configuration data, structuring in 161, 162 I immutability, variables 14 include keyword preferring 93 Infrastructure as a Service (IaaS) 184 Infrastructure as Code paradigm 105 inheriting class naming 151 installation, modules 101, 102 instances method 123 M manifest about 182 control structures, adding in 13, 14 dry-testing 12 structure 9 manifest, and Hiera designs selecting between 175 manifest, building for cloud about 187 arbitrary configuration files, composing 194-196 certificate names, selecting 190, 191 distributed catalog, creating 191-194 functionality, mapping to nodes 187-189 instance deletions, handling 197, 198 metaparameters 18 model substantiating, with providers 59, 60 modules about 96 agent, enhancing through plugins 116, 117 best practices 102 content structure 97, 98 documentation 98, 99 generalization, avoiding 103 identifying, in Forge 130 important parts 96 installing 101, 102 manifest files, gathering 102, 103 obtaining 101, 102 searching, in Forge 130 testing 104 testing, with environments 104, 105 URL, for publishing 98 monolithic implementation 71 mount resource type 29, 30 N Nginx about 45 Phusion Passenger, using with 45, 46 nodes file 100 Notice keyword 20 [ 209 ] O operatingsystemrelease fact 53 output interpreting, of puppet apply command 11, 12 P Proudly sourced and uploaded by [StormRG] Kickass Torrents | TPB | ExtraTorrent | h33t parameterized classes consequences 92, 93 parameters versus properties 10 parser functions 96 performance bottlenecks avoiding, from templates 136 performance considerations about 42 basic tuning 46 Passenger, using with Nginx 45 switching, to Phusion Passenger 43, 44 Phusion Passenger switching to 43, 44 URL, for installation instructions 45 using, with Nginx 45, 46 Platform as a Service (PaaS) 184 plugins about 116 custom types, creating 118 custom types, naming 118 management commands, declaring 121 provider, adding 121 provider, allowing to prefetch existing resources 123, 124 provider functionality, implementing 122, 123 resource names, using 120 resource type interface, creating 119 sensible parameter hooks, designing 120 types, making robust 125 used, for enhancing modules agent 116, 117 plugins, types custom facts 116 parser functions 116 providers 116 types 116 processorcount fact 52 properties about 10 versus parameters 10 providerless resource types 61 provider parameter 10 providers model, substantiating with 59, 60 summarizing 61 Puppet about 182 installing 8 modules 96 typical scopes 182 URL 182 Puppet agent certificate, renewing 40 life cycle 38, 39 running, from cron 41 setting up 35-37 puppet apply command about 9, 31 output, interpreting of 11, 12 PuppetBoard 186 Puppet Dashboard 186 Puppet Explorer 186 Puppet Labs URL 8 URL, for advanced approaches 43 URL, for core resource types 61 URL, for style guide 52 URL, for system installation information 32 URL, for Troubleshooting section 47 puppetlabs-strings module URL 99 Puppet master about 31 configuration settings, inspecting 35 master machine, setting up 32 master manifest, creating 33, 34 tasks 32 puppetmaster system service 33 puppet module install command 101 Puppet support, for SSL CSR attributes URL 199 [ 210 ] Puppet, taking to cloud about 184 agents, initializing 185 cloud-provisioner module, using 186 Puppet toolchain 46 rspec-puppet module about 105 URL 105 R separate data storage need for 158 singletons 135 site manifest 33 SSL troubleshooting 47, 48 stdlib module 101 strings 15 subscribe metaparameter 23 successful provisioning, ensuring about 202 manifests, testing 204, 205 necessary relationships, adding 203 systems summarizing, with Facter 50, 51 S realize function 138, 139 redundancy saving, resource defaults used 152, 153 relationships, containers performance implications 89 require metaparameter 19 resource chaining 17 resource defaults used, for saving redundancy 152, 153 resource interaction implementing 22-24 resource parameters overriding 147, 148 resources about 10 converting, to data 172-174 exporting 142 exporting, to agents 141 importing 142 realizing, collectors used 140, 141 resources, exporting about 141 central firewall, maintaining 146 custom configuration, automating 144 hosts files, managing 144 master configuration, for storing exported resources 142 Nagios configuration, simplifying 145, 146 SSH host keys, exporting 143 resource type life cycle, agent side 58, 59 resource types cron 29 examining 25, 26 exec 27, 28 group 26 mount 29, 30 user 26 revocation 39 Roles and Profiles pattern 183 T templates performance bottlenecks, avoiding from 136 using 135, 136 template syntax learning 134, 135 transaction 57 Trusted Facts 189 types about 117 summarizing 61 type system 57 typical scopes, Puppet about 182 profiles 183, 184 roles 183, 184 U user resource type 26 utilities, custom module complexity, dealing 115, 116 configuration items, adding 111, 112 creating, for derived manifests 110 [ 211 ] customization, allowing 113 unwanted configuration items, removing 114, 115 W Warning keyword 20 V Y Vagrant 182 variables using 14 variable types about 14 arrays 15 hashes 14 strings 15 virtual resources creating 137, 138 yum command 8 [ 212 ] Thank you for buying Puppet Essentials About Packt Publishing Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL Management" in April 2004 and subsequently continued to specialize in publishing highly focused books on specific technologies and solutions.

Industry 4.0: The Industrial Internet of Things by Alasdair Gilchrist

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, additive manufacturing, Amazon Web Services, augmented reality, autonomous vehicles, barriers to entry, business intelligence, business process, chief data officer, cloud computing, connected car, cyber-physical system, deindustrialization, fault tolerance, global value chain, Google Glasses, hiring and firing, industrial robot, inflight wifi, Infrastructure as a Service, Internet of things, inventory management, job automation, low skilled workers, millennium bug, pattern recognition, peer-to-peer, platform as a service, pre–internet, race to the bottom, RFID, Skype, smart cities, smart grid, smart meter, smart transportation, software as a service, stealth mode startup, supply-chain management, trade route, web application, WebRTC, WebSocket, Y2K

The cloud will stretch to accommodate the demand without any customer interaction; the cloud will manage the demand dynamically by assigning more resources. There are three categories of service—IaaS (Infrastructure as a Service), PaaS (Platform as a Service), and SaaS (Software as a Service). Each category defines a set of services available to the customer, and this is key to the cloud— everything is offered as a service. This is based on the earlier SOA (service orientated architecture), where web services were used to access application functions. Similarly, the cloud operators use web services to expose their features and products as services. • IaaS (Infrastructure as a Service)—AWS’s basic product back in 2005 and it offered their excess infrastructure for lease to companies. Instead of buying hardware and establishing a server room or data center a SME could rent compute, storage, and network from Amazon, the beauty being they would only pay for what they used


pages: 540 words: 103,101

Building Microservices by Sam Newman

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

airport security, Amazon Web Services, anti-pattern, business process, call centre, continuous integration, create, read, update, delete, defense in depth, don't repeat yourself, Edward Snowden, fault tolerance, index card, information retrieval, Infrastructure as a Service, inventory management, job automation, load shedding, loose coupling, platform as a service, premature optimization, pull request, recommendation engine, social graph, software as a service, source of truth, the built environment, web application, WebSocket, x509 certificate

And certainly make sure you can get access to the raw data to provide your own reporting or dashboards if you need to. Another key benefit of understanding your trends is when it comes to capacity planning. Are we reaching our limit? How long until we need more hosts? In the past when we brought physical hosts, this was often an annual job. In the new age of on-demand computing provided by infrastructure as a service (IaaS) vendors, we can now scale up or down in minutes, if not seconds. This means that if we understand our usage patterns, we can make sure we have just enough infrastructure to serve our needs. The smarter we are in tracking our trends and knowing what to do with them, the more cost effective and responsive our systems can be. Service Metrics The operating systems we run on generate a large number of metrics for us, as you’ll find the moment you install collectd on a Linux box and point it at Graphite.


pages: 329 words: 95,309

Digital Bank: Strategies for Launching or Becoming a Digital Bank by Chris Skinner

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

algorithmic trading, Amazon Web Services, Any sufficiently advanced technology is indistinguishable from magic, augmented reality, bank run, Basel III, bitcoin, business intelligence, business process, business process outsourcing, call centre, cashless society, clean water, cloud computing, corporate social responsibility, credit crunch, crowdsourcing, cryptocurrency, demand response, disintermediation, don't be evil, en.wikipedia.org, fault tolerance, fiat currency, financial innovation, Google Glasses, high net worth, informal economy, Infrastructure as a Service, Internet of things, Jeff Bezos, Kevin Kelly, Kickstarter, M-Pesa, margin call, mass affluent, mobile money, Mohammed Bouazizi, new economy, Northern Rock, Occupy movement, Pingit, platform as a service, Ponzi scheme, prediction markets, pre–internet, QR code, quantitative easing, ransomware, reserve currency, RFID, Satoshi Nakamoto, Silicon Valley, smart cities, software as a service, Steve Jobs, strong AI, Stuxnet, trade route, unbanked and underbanked, underbanked, upwardly mobile, We are the 99%, web application, Y2K

A slightly confusing and technical discussion, so let’s start with the idea of cloud computing in banking. Cloud Computing is a wide and diverse operation that has gained a panacea status of being all things to all people. It’s Salesforce.com, Azure, Exalogic, Amazon and more. Put in “Cloud Computing” to Google, who also provide clouds, and you get sponsored adverts from HP, Intel, Siemens and more all talking about clouds. It’s Software as a Service, Platform as a Service, and Infrastructure as a Service. It’s public clouds, private clouds, hybrid clouds. It’s every and any darned thing you want and, as a result, it’s lost its meaning. As a result, bank CIO’s have heard about Cloud Computing, but have no idea how to articulate what it is to their Board and CEO, how to justify it, how to present it as meaningful and how to get a decision. The Board and CEO have heard of cloud, but hear it’s dangerous.

The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences by Rob Kitchin

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Bayesian statistics, business intelligence, business process, cellular automata, Celtic Tiger, cloud computing, collateralized debt obligation, conceptual framework, congestion charging, corporate governance, correlation does not imply causation, crowdsourcing, discrete time, George Gilder, Google Earth, Infrastructure as a Service, Internet Archive, Internet of things, invisible hand, knowledge economy, late capitalism, lifelogging, linked data, Masdar, means of production, Nate Silver, natural language processing, openstreetmap, pattern recognition, platform as a service, recommendation engine, RFID, semantic web, sentiment analysis, slashdot, smart cities, Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia, smart grid, smart meter, software as a service, statistical model, supply-chain management, the scientific method, The Signal and the Noise by Nate Silver, transaction costs

Since then, the relative share of digital data has continued to grow, especially with the development of distributed storage and services through cloud computing and data centres. Cloud computing takes two forms that often work cooperatively: utility clouds and data clouds (Farber et al. 2011). Utility clouds provide IT capabilities as locationindependent, on-demand services accessible via the Internet, including ‘infrastructure as a service’ (IaaS) such as storage, servers and networks, ‘platform as a service’ (PaaS) comprising an execution environment for the development of custom applications and databases, and ‘software as a service’ (SaaS) that enables users to access their applications and to process data remotely (Farber et al. 2011; Hancke et al. 2012). Data clouds enable massive volumes of data, that might be generated across an enterprise, to be linked, stored and processed remotely, drawing on the computational power of hundreds of machines, and analysed via utility services (Farber et al. 2011).


pages: 525 words: 142,027

CIOs at Work by Ed Yourdon

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

8-hour work day, Apple's 1984 Super Bowl advert, business intelligence, business process, call centre, cloud computing, crowdsourcing, distributed generation, Donald Knuth, Flash crash, Googley, Grace Hopper, Infrastructure as a Service, Innovator's Dilemma, inventory management, Julian Assange, knowledge worker, Mark Zuckerberg, Nicholas Carr, rolodex, shareholder value, Silicon Valley, six sigma, Skype, smart grid, smart meter, software as a service, Steve Ballmer, Steve Jobs, Steven Levy, the new new thing, the scientific method, WikiLeaks, Y2K, Zipcar

Yourdon: Interesting. Wakeman: There’s a lot of great new security technology out there. Yourdon: Funny you should mention that. That was the very next thing on my list of questions. What are some of the new trends that you think are really going to influence your situation over the next couple of years? Wakeman: Well, call it virtualization, call it cloud computing, call it private public, or call it infrastructure as a service. That is huge. The ability to buy infrastructure and software as services is having a tremendously disruptive impact to the IT industry. Now, I think for my IT organization, where we outsourced our infrastructure nine years ago—we’re on our tenth year of that contract—we’re better prepared for that transition than others because we don’t own our data center or the staff that manage it.


pages: 382 words: 120,064

Bank 3.0: Why Banking Is No Longer Somewhere You Go but Something You Do by Brett King

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, additive manufacturing, Airbus A320, Albert Einstein, Amazon Web Services, Any sufficiently advanced technology is indistinguishable from magic, asset-backed security, augmented reality, barriers to entry, bitcoin, bounce rate, business intelligence, business process, business process outsourcing, call centre, capital controls, citizen journalism, Clayton Christensen, cloud computing, credit crunch, crowdsourcing, disintermediation, en.wikipedia.org, fixed income, George Gilder, Google Glasses, high net worth, I think there is a world market for maybe five computers, Infrastructure as a Service, invention of the printing press, Jeff Bezos, jimmy wales, London Interbank Offered Rate, M-Pesa, Mark Zuckerberg, mass affluent, Metcalfe’s law, microcredit, mobile money, more computing power than Apollo, Northern Rock, Occupy movement, optical character recognition, peer-to-peer, performance metric, Pingit, platform as a service, QR code, QWERTY keyboard, Ray Kurzweil, recommendation engine, RFID, risk tolerance, Robert Metcalfe, self-driving car, Skype, speech recognition, stem cell, telepresence, Tim Cook: Apple, transaction costs, underbanked, US Airways Flight 1549, web application

Harte explained the rationale behind this move as looking to reduce the cost of purchasing IT and related infrastructure by paying for services on demand as CBA grew, especially as reliance on more digital integration and real-time engagement became essential to CBA’s customer experience. In December 2011, Deutsche Bank went live with its first phase of cloud deployment, namely its IaaS (Infrastructure as a Service) development platform. One of the imperatives at DB was faster development times for bank partners, developers and vendors, and what it called an “aggressive standardisation” attempt. So the first driver for private cloud deployment is clear. Standardisation of employee internal applications and systems across the enterprise, and very agile platforms that can scale up and down with demand.


pages: 497 words: 144,283

Connectography: Mapping the Future of Global Civilization by Parag Khanna

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

1919 Motor Transport Corps convoy, 2013 Report for America's Infrastructure - American Society of Civil Engineers - 19 March 2013, 3D printing, 9 dash line, additive manufacturing, Admiral Zheng, affirmative action, agricultural Revolution, Airbnb, Albert Einstein, amateurs talk tactics, professionals talk logistics, Amazon Mechanical Turk, Asian financial crisis, asset allocation, autonomous vehicles, banking crisis, Basel III, Berlin Wall, bitcoin, Black Swan, blockchain, borderless world, Boycotts of Israel, Branko Milanovic, BRICs, British Empire, business intelligence, call centre, capital controls, charter city, clean water, cloud computing, collateralized debt obligation, commoditize, complexity theory, continuation of politics by other means, corporate governance, corporate social responsibility, credit crunch, crony capitalism, crowdsourcing, cryptocurrency, cuban missile crisis, data is the new oil, David Ricardo: comparative advantage, deglobalization, deindustrialization, dematerialisation, Deng Xiaoping, Detroit bankruptcy, digital map, diversification, Doha Development Round, edge city, Edward Snowden, Elon Musk, energy security, ethereum blockchain, European colonialism, eurozone crisis, failed state, Fall of the Berlin Wall, family office, Ferguson, Missouri, financial innovation, financial repression, fixed income, forward guidance, global supply chain, global value chain, global village, Google Earth, Hernando de Soto, high net worth, Hyperloop, ice-free Arctic, if you build it, they will come, illegal immigration, income inequality, income per capita, industrial cluster, industrial robot, informal economy, Infrastructure as a Service, interest rate swap, Intergovernmental Panel on Climate Change (IPCC), Internet of things, Isaac Newton, Jane Jacobs, Jaron Lanier, John von Neumann, Julian Assange, Just-in-time delivery, Kevin Kelly, Khyber Pass, Kibera, Kickstarter, labour market flexibility, labour mobility, LNG terminal, low cost carrier, manufacturing employment, mass affluent, mass immigration, megacity, Mercator projection, Metcalfe’s law, microcredit, mittelstand, Monroe Doctrine, mutually assured destruction, New Economic Geography, new economy, New Urbanism, off grid, offshore financial centre, oil rush, oil shale / tar sands, oil shock, openstreetmap, out of africa, Panamax, Parag Khanna, Peace of Westphalia, peak oil, Pearl River Delta, Peter Thiel, Philip Mirowski, Plutocrats, plutocrats, post-oil, post-Panamax, private military company, purchasing power parity, QWERTY keyboard, race to the bottom, Rana Plaza, rent-seeking, reserve currency, Robert Gordon, Robert Shiller, Robert Shiller, Ronald Coase, Scramble for Africa, Second Machine Age, sharing economy, Shenzhen was a fishing village, Silicon Valley, Silicon Valley startup, six sigma, Skype, smart cities, Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia, South China Sea, South Sea Bubble, sovereign wealth fund, special economic zone, spice trade, Stuxnet, supply-chain management, sustainable-tourism, TaskRabbit, telepresence, the built environment, The inhabitant of London could order by telephone, sipping his morning tea in bed, the various products of the whole earth, Tim Cook: Apple, trade route, transaction costs, UNCLOS, uranium enrichment, urban planning, urban sprawl, WikiLeaks, young professional, zero day

India, Japan, and South Korea have also achieved a degree of digital independence in that they have the requisite supply of engineers and domestic companies, market depth and payment systems, cyber-security tools, and other ingredients for a self-sustaining domestic technology sector that provides the full spectrum of Internet services. This cyber autarky is crucial in an age of denial of service cyber attacks and other disruptions. But very few countries can offer quality alternatives. For emerging markets such as Vietnam and Malaysia, attempting to build indigenous systems means wasting billions of dollars when instead they can take advantage of low-cost Infrastructure as a Service cloud-based software, data storage, and enterprise applications. In such countries, citizens also suffer the double whammy of having their data no longer secure “offshore” but vulnerable “onshore.” Subjected to restrictions on online speech and data security violations, citizens mobilize not just on the Internet but for their right to unfettered use of it, shifting their data to new Google, Amazon, or other services safeguarded from government intrusion just as Chinese and Russian citizens move their cash abroad.


pages: 348 words: 39,850

Data Scientists at Work by Sebastian Gutierrez

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, algorithmic trading, Bayesian statistics, bioinformatics, bitcoin, business intelligence, chief data officer, clean water, cloud computing, commoditize, computer vision, continuous integration, correlation does not imply causation, creative destruction, crowdsourcing, data is the new oil, DevOps, domain-specific language, Donald Knuth, follow your passion, full text search, informal economy, information retrieval, Infrastructure as a Service, Intergovernmental Panel on Climate Change (IPCC), inventory management, iterative process, lifelogging, linked data, Mark Zuckerberg, microbiome, Moneyball by Michael Lewis explains big data, move fast and break things, move fast and break things, natural language processing, Network effects, nuclear winter, optical character recognition, pattern recognition, Paul Graham, personalized medicine, Peter Thiel, pre–internet, quantitative hedge fund, quantitative trading / quantitative finance, recommendation engine, Renaissance Technologies, Richard Feynman, Richard Feynman, self-driving car, side project, Silicon Valley, Skype, software as a service, speech recognition, statistical model, Steve Jobs, stochastic process, technology bubble, text mining, the scientific method, web application

So the definition of what we’re doing, I’m going to say, has evolved. www.it-ebooks.info 145 146 Chapter 7 | Roger Ehrenberg, IA Ventures I think that when most people think about big data, they think infrastructure. They think of enabling technologies. We’ve done a bunch of investments in that area. We may or may not do a lot more of that, at least in this next wave of opportunities. If you look at what we’ve done lately, they’re much more applications. Whether it’s reshaping how quality inspection is done in manufacturing processes, or infrastructure-as-a-service for the developer community. We’ve also made three investments in the healthcare space. As the market has evolved, we’ve evolved. We’ve gotten very clear about what we’re really good at and how we can help the most. That’s naturally caused us to gravitate toward certain kinds of founders and certain use cases. If we were to sit down and have this discussion in three years, I’d be fascinated to hear what I was saying, since we’ve evolved and sharpened our focus and investment methodology since the early days of 2010.