cosmic microwave background

32 results back to index


pages: 265 words: 79,944

First Light: Switching on Stars at the Dawn of Time by Emma Chapman

Albert Einstein, All science is either physics or stamp collecting, Arthur Eddington, complexity theory, correlation does not imply causation, cosmic microwave background, cosmological constant, dark matter, Edmond Halley, Edward Charles Pickering, endowment effect, Ernest Rutherford, friendly fire, Galaxy Zoo, Harvard Computers: women astronomers, horn antenna, Isaac Newton, James Webb Space Telescope, loss aversion, low earth orbit, Magellanic Cloud, Neil Armstrong, Olbers’ paradox, Ralph Waldo Emerson, the long tail, uranium enrichment, Wilhelm Olbers

It was a discovery of unparalleled importance for our understanding of cosmology, and for that Penzias and Wilson won the 1978 Nobel Prize for Physics.20 In October 2019, Peebles also won the Nobel Prize ‘for theoretical discoveries in physical cosmology’, to which his prediction of the CMB contributed a large part.21 They had detected what we now know as the cosmic microwave background (CMB), the radiation left over from the Big Bang. The Universe started from a Big Bang. The Universe began. Time started. There was a first of everything, including stars. The Penzias and Wilson measurement constituted one data point on the expected blackbody spectrum of the cosmic microwave background. Attention turned to filling in the rest of the wavelengths. Penzias and Wilson’s experiment was ultimately limited due to it being ground based.

Absolute Radiometer for Cosmology, Astrophysics and Diffuse Emission 2 (ARCADE 2) here absorption lines galactic spectra here, here quasar spectra here, here stellar spectra here, here, here, here, here, here, here acceleration here accretion disks black holes here, here, here, here star formation here, here Adams, Douglas here airships here, here, here All the Dead Stars (Paterson) here Aller, Lawrence here, here Alpha Centauri here alpha-element ratios here anaerobic life here Andromeda here age of light from here blueshifting here, here, here, here calcium absorption lines here, here, here collision with Milky Way here, here dwarf galaxies around here high- and low-velocity stars here H-R diagrams here luminosity here angular size here Antennae Galaxies here Antikythera device here astrology here astronauts here asymptotic giant branch (AGB) stars here atomic bombs here atomic cooling halos (ACH) here Baade, Walter here, here background radiation excess background theory here see also cosmic microwave background baryonic mass here Beanie Baby bubble here Bell Telephone Laboratory here Bell-Burnell, Jocelyn here beryllium here Betelgeuse here Big Bang here, here, here, here, here see also cosmic microwave background binary systems here, here black holes here, here, here accretion disks here, here, here, here accretion limit here binary systems here at centre of galaxies here, here, here direct collapse here, here, here first image here light and here Massive Compact Halo Objects (MACHOs) here Population III stars here, here, here quasars here, here, here, here supermassive here, here, here, here blackbody spectrum here, here, here, here, here, here, here blood moons here blueshifting here, here, here, here Bond, Howard here Bowman, Judd here Brown, Ernest here brown dwarfs here, here Bryson, Bill here Butler, Howard here calcium here, here, here Cannon, Annie Jump here carbon here, here, here carbon dioxide here, here Carter, Howard here, here Cassini, Giovanni Domenico here Centaurus here Chamberlain, Joseph here, here Chang’e missions here chess here Columbus, Christopher here core-collapse supernovae here, here corona here, here, here, here coronagraph here Coronal Heating Problem here, here coronium here, here Cosmic Background Explorer (COBE) here, here Cosmic Dawn here, here, here, here, here, here, here, here see also Experiment to Detect the Global EoR Signature (EDGES) cosmic microwave background here, here, here constraint on Epoch of Reionisation here discovery here, here spin temperature and here, here, here, here Cosmic Spectrum, The (Paterson) here, here cosmological constant here cyanobacteria here, here, here, here, here Dark Ages here, here, here, here, here, here, here, here, here, here, here, here Dark Energy Survey here, here dark matter here, here, here, here annihilation here, here in dwarf galaxies here EDGES results and here flat rotation curves and here, here halos here, here Massive Compact Halo Objects (MACHOs) here millicharged dark matter model here minihalos here, here, here reionisation of hydrogen and here Weakly Interacting Massive Particles (WIMPs) here, here de Bruyn, Ger here deuterium here, here, here, here Dicke, Robert here direct collapse black holes (DCBHs) here, here, here Doppler effect here, here, here Durham, UK here, here dwarf galaxies here alpha-element ratios here dark matter here defining here differentiating from globular clusters here, here, here, here dwarf spheroidals here Eridanus II here fossil first galaxies here galactic cannibalism here, here Large Magellanic Cloud here, here mass here, here metallicity here metal-poor stars here missing satellite problem here naming here neutron-capture elements here, here numbers here, here probability of finding Population III stars in here reionisation of hydrogen and here Segue 1 here, here, here, here, here, here, here, here Small Magellanic Cloud here, here stellar chemistry here ultra-faint here, here, here dynamical mass here Earth Great Oxygenation Event here, here, here orbit here snowball Earth here temperature here Earth-Moon-Earth (Paterson) here eclipses lunar here, here solar here, here, here, here Eddington, Arthur here Edison Company here, here Egypt, ancient here, here, here, here Einstein, Albert here, here, here, here, here elastic energy here electromagnetic spectrum here, here see also light electrons here, here, here, here ionisation here, here, here, here pair production here spin-flip transitions here, here Emerson, Ralph Waldo here endowment effect here energy conservation here elastic here force and here gravitational potential here, here kinetic here, here, here, here, here mass and here thermal here, here, here Epoch of Reionisation here, here, here, here, here, here constraints here cosmic microwave background and here dwarf galaxies here LOFAR-Epoch of Reionisation project here Population III stars here, here, here, here quasars here, here, here, here reionisation of hydrogen here, here, here, here, here, here see also Experiment to Detect the Global EoR Signature (EDGES) Eridanus II here Event Horizon Telescope (EHT) here excess background theory here Experiment to Detect the Global EoR Signature (EDGES) here, here, here, here, here absorption trough here, here, here dark matter theories here early presence of black holes here excess background theory here foregrounds theory here exponential growth here Farside Array for Radio Science Investigations of the Dark Ages and Exoplanets (FARSIDE) here Fast Radio Bursts (FRBs) here Fermi Large Area Telescope (Fermi-LAT) here first galaxies here, here first stars see Population III stars First Three Minutes, The (Weinberg) here flat rotation curves here, here Fleming, Williamina P. here Florian Goebel Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) here Frost, Edwin here Fukushima disaster, Japan here galaxies atomic cooling halos (ACH) here black holes at centre here, here, here Centaurus A here collisions here, here definitions here Doppler effect here, here, here first here, here galactic cannibalism here, here Hubble flow here Local Group here M87 here mass-to-light ratio here spectra here, here speed here spiral here see also Andromeda; dwarf galaxies; Milky Way Galilei, Galileo here gamma rays here Gamow, George here gas clouds see star formation gas pressure here, here, here general relativity here, here, here Giant Metrewave Radio Telescope (GMRT) here Glacier National Park, US here globular clusters here, here, here, here, here gravitational potential energy here, here gravitational waves here gravity here, here, here, here Great American Eclipse here Great Oxygenation Event here, here, here Greece, ancient here Green Bank Telescope here Halley, Edmond here Hamelin Pool, Australia here height, human here helium here, here, here, here, here, here, here, here, here Herschel, Caroline here Herschel, William here Hertzsprung-Russell (H-R) diagrams here, here, here Hill-Brown theory here Hindenburg airship here Hiroshima, Japan here Hitchhiker’s Guide to the Galaxy, The (Adams) here Holmdel Horn Antenna here, here, here Holst, Gustav here Hubble, Edwin here Hubble flow of galaxies here Hubble Space Telescope here, here, here, here, here, here, here Hubble Ultra Deep Field here, here Hubble–Lemaître law here hydrogen here, here, here, here, here, here, here 21cm radiation here, here, here, here absorption lines here, here, here, here in airships here collisions here flammability here isotopes here, here molecular hydrogen cooling here, here, here, here, here nuclear fusion here, here, here, here, here, here nucleosynthesis here recombination here, here, here reionisation here, here, here, here, here, here spin temperature here, here, here, here see also star formation hydrogen bombs here Iben, Icko, Jr. here, here ice age here Illustris simulation here inflation period here infrared radiation here, here, here, here initial mass function here, here, here, here interferometry here International Dark Sky Places here International Thermonuclear Experimental Reactor (ITER) here Interstellar (film) here interstellar medium here metal enrichment here, here, here, here, here, here Io here, here ionisation here reionisation of hydrogen here, here, here, here, here, here ionosphere here, here, here, here iron here, here, here, here, here see also metal-poor stars ironstones here isotopes here, here James Webb Space Telescope (JWST) here, here, here, here Japan Fukushima disaster here Nagasaki and Hiroshima bombings here Naha tug-of-war here, here Jeans, Sir James Hopwood here Jeans mass here, here, here, here, here, here Jupiter, moons of here, here Keplerian descent here kinetic energy here, here, here, here, here King, Ivan here Koopmans, Leon here Lagrange points here, here Lake District, UK here Lake Erie, US here Large Magellanic Cloud here, here Large Synoptic Survey Telescope (LSST) here, here Laser Interferometer Gravitational-Wave Observatory (LIGO) here Laser Interferometer Space Antenna (LISA) here, here Lemaître, Georges here light black holes and here colours here Doppler effect here, here, here electromagnetic spectrum here, here infrared here, here, here, here mass-to-light ratio here speed here, here, here ultraviolet (UV) here, here, here, here, here, here, here wavelengths here wave-particle duality here see also photons light pollution here lightning here lithium here Local Group of galaxies here Lockyer, Norman here Loeb, Abraham here Long Wavelength Array (LWA) here longitude here Lovell, Bernard here Lovell Telescope here Low Frequency Array (LOFAR) here, here, here, here, here, here luminous mass here, here, here lunar eclipses here, here Lunar Low Frequency Antennas for Radio Astronomy (LUFAR) here Lyman-Werner band of energies here M87 here magnesium here Magpie Bridge satellite here main sequence stars here, here mass baryonic here deaths of stars and here, here, here dynamical here energy and here gravity and here Jeans mass here, here, here, here, here, here luminous here, here, here mass-lifetime relation here, here mass-to-light ratio here maximum mass of stars here measuring here, here star formation and here, here, here, here Massive Compact Halo Objects (MACHOs) here Mercury here metal content of stars here, here, here, here, here, here, here, here, here in dwarf galaxies here, here, here metal-poor stars here, here metal cooling here, here metal enrichment of interstellar medium here, here, here, here, here, here metal-free stars see Population III stars metal-poor stars here, here discovery here, here in dwarf galaxies here metallicity values here, here in Milky Way here, here, here searching for here, here, here SM0313-6708 here SMSS J1605-1443 here, here, here velocities here, here methane here, here, here Mice Galaxies here microwave ovens here microwaves here Milky Way here black hole at centre here, here bulge and disk here collision with Andromeda here, here gamma rays here halo here, here, here, here high- and low-velocity stars here H-R diagrams here metal-poor stars here, here, here missing satellite problem here numbers of dwarf galaxies around here probability of finding Population III stars in here Sagittarius Stream here millicharged dark matter model here minihalos here, here, here missing satellite problem here Mitchell, Edgar here molecular hydrogen cooling here, here, here, here, here Moon acceleration experiment on here angular size here Chang’e missions here distance from Earth here lunar eclipses here, here radio arrays on here solar eclipses here, here, here, here tidal locking here moons of Jupiter here, here mummies here, here, here, here Murchison Widefield Array (MWA) here Nagasaki, Japan here Naha tug-of-war, Japan here, here nanoflares here, here National Aeronautics and Space Administration (NASA) here, here, here, here, here National Air and Space Museum, Washington DC here neon here, here Neptune here, here Netherlands-China Low Frequency Explorer (NCLE) here, here neutron stars here, here, here neutron-capture elements here, here neutrons here, here, here, here, here New York Times here Newton, Isaac here, here Nobel Prize for Physics here Notes From a Small Island (Bryson) here nuclear fission here, here nuclear fusion here, here, here, here, here, here nuclear power here, here nuclear weapons here nucleosynthesis here Olbers’ paradox here Oort, Jan here optical astronomy here, here Orion here oxygen here, here, here, here, here see also Great Oxygenation Event pair production here pair-instability supernovae here, here Parker Solar Probe here Parkes radio telescope here Paterson, Katie here, here, here, here, here, here Payne-Gaposchkin, Cecilia here, here, here Peebles, P.

A resounding victory for the Big Bang theory. Considering the stakes and the level of commitment in both camps this wasn’t enough to end the argument. The argument between Steady State scientists and Big Bang scientists eventually ended only because of the second hallmark of an explosion: the afterglow. The cosmic microwave background While Penzias and Wilson were trying to figure out the mysterious signal, four astronomers were setting up their own radio antenna, 60km (37 miles) down the road at Princeton University. They had the express aim of detecting a background radiation residual from the Big Bang. P. James Peebles, Robert Dicke, Peter Roll and David Wilkinson had realised that the early Universe would be extremely hot after the Big Bang, just like any explosion.


pages: 420 words: 119,928

The Three-Body Problem (Remembrance of Earth's Past) by Cixin Liu

Apollo 13, back-to-the-land, cosmic microwave background, Deng Xiaoping, game design, Henri Poincaré, horn antenna, information security, invisible hand, Isaac Newton, Norbert Wiener, Panamax, quantum entanglement, RAND corporation, Search for Extraterrestrial Intelligence, Von Neumann architecture

If the cosmic microwave background is fluctuating this much, we should be able to see it with our own eyes.” “What are you talking about? The wavelength of the cosmic microwave background is seven centimeters. That’s five orders of magnitude longer than the wavelength of visible light. How can we possibly see it?” “Using 3K glasses.” “Three-K glasses?” “It’s a sort of science toy we made for the Capital Planetarium. With our current level of technology, we could take the six-meter horn antenna used by Penzias and Wilson almost half a century ago to discover the cosmic microwave background and miniaturize it to the size of a pair of glasses.

I’m sorry to be calling so late.” “No problem. I can’t sleep anyway.” “I have … seen something, and I’d like your help. Do you know if there are any facilities in China that are observing the cosmic microwave background?” Wang had the urge to talk to someone about what was going on, but he thought it best to not let too many people know about the countdown that only he could see. “The cosmic microwave background? What made you interested in that? I guess you really have run into some problems.… Have you been to see Yang Dong’s mother yet?” “Ah—I’m sorry. I forgot.” “No worries. Right now, many scientists have … seen something, like you.

Sha’s lab was mainly responsible for receiving the data transmitted from three satellites: the Cosmic Background Explorer, COBE, launched in November of 1989 and about to be retired; the Wilkinson Microwave Anisotropy Probe, WMAP, launched in 2003; and Planck, the space observatory launched by the European Space Agency in 2009. Cosmic microwave background radiation very precisely matched the thermal black body spectrum at a temperature of 2.7255 K and was highly isotropic—meaning nearly uniform in every direction—with only tiny temperature fluctuations at the parts per million range. Sha Ruishan’s job was to create a more detailed map of the cosmic microwave background using observational data. The lab wasn’t very big. Equipment for receiving satellite data was squeezed into the main computer room, and three terminals displayed the information sent by the three satellites.


pages: 634 words: 185,116

From eternity to here: the quest for the ultimate theory of time by Sean M. Carroll

Albert Einstein, Albert Michelson, anthropic principle, Arthur Eddington, Brownian motion, cellular automata, Claude Shannon: information theory, Columbine, cosmic microwave background, cosmological constant, cosmological principle, dark matter, dematerialisation, double helix, en.wikipedia.org, gravity well, Great Leap Forward, Harlow Shapley and Heber Curtis, heat death of the universe, Henri Poincaré, Isaac Newton, Johannes Kepler, John von Neumann, Lao Tzu, Laplace demon, Large Hadron Collider, lone genius, low earth orbit, New Journalism, Norbert Wiener, pets.com, Pierre-Simon Laplace, Richard Feynman, Richard Stallman, Schrödinger's Cat, Slavoj Žižek, Stephen Hawking, stochastic process, synthetic biology, the scientific method, time dilation, wikimedia commons

Cosmology is a good example, just because the speed of light plays an important role, and we have a palpable sense of “looking at an event in the past.” When we try to reconstruct the history of the universe, it’s tempting to look at (for example) the cosmic microwave background and say, “I can see what the universe was like almost 14 billion years ago; I don’t have to appeal to any fancy Past Hypothesis to reason my way into drawing any conclusions.” That’s not right. When we look at the cosmic microwave background (or light from any other distant source, or a photograph of any purported past event), we’re not looking at the past. We’re observing what certain photons are doing right here and now.

For example, when the universe was about 1 minute old, it was a nuclear reactor, fusing protons and neutrons into helium and other light elements in a process known as “primordial nucleosynthesis.” We can observe the abundance of such elements today and obtain spectacular agreement with the predictions of the Big Bang model. We also observe cosmic microwave background radiation. The early universe was hot as well as dense, and hot things give off radiation. The theory behind night-vision goggles is that human beings (or other warm things) give off infrared radiation that can be detected by an appropriate sensor. The hotter something is, the more energetic (short wavelength, high frequency) is the radiation it emits.

TURNING UP THE CONTRAST KNOB ON THE UNIVERSE The universe is a simple place. True, it contains complicated things like galaxies and sea otters and federal governments, but if we average out the local idiosyncrasies, on very large scales the universe looks pretty much the same everywhere. Nowhere is this more evident than in the cosmic microwave background. Every direction we look in the sky, we see microwave background radiation that looks exactly like that from an object glowing serenely at some fixed temperature—what physicists call “blackbody” radiation. However, the temperature is ever so slightly different from point to point on the sky; typically, the temperature in one direction differs from that in some other direction by about 1 part in 100,000.


pages: 198 words: 57,703

The World According to Physics by Jim Al-Khalili

accounting loophole / creative accounting, Albert Einstein, butterfly effect, clockwork universe, cognitive dissonance, cosmic microwave background, cosmological constant, dark matter, double helix, Ernest Rutherford, fake news, Fellow of the Royal Society, germ theory of disease, gravity well, heat death of the universe, Higgs boson, information security, Internet of things, Isaac Newton, Large Hadron Collider, Murray Gell-Mann, post-truth, power law, publish or perish, quantum entanglement, Richard Feynman, Schrödinger's Cat, Stephen Hawking, supercomputer in your pocket, the scientific method, time dilation

Put more bluntly, without dark matter, most galaxies, and hence stars and planets, could never have formed in the first place. This remarkable conclusion is supported beautifully by data showing subtle fluctuations in the temperature of deep space, the imprint of the very young universe on the cosmic microwave background radiation. It was recognised back in the late 1970s that these fluctuations in the cosmic microwave background, while helpful in providing the seeding for the present-day distribution of matter in the universe, were too tiny to explain how galaxies could form. Dark matter helped provide the extra clumping that was needed. It was one of the great scientific triumphs of the end of the twentieth century when the COBE satellite2 measured these fluctuations to be just what had been predicted.

The further out we look, the further back in time we are probing, since the light we see will have taken billions of years to reach us and is thus bringing us information about the distant past. And if we know how fast the universe has been expanding, we can wind back the clock to a time when everything was squeezed together in the same place: the moment of the universe’s birth. Quite separately, by studying the tiny variations in the temperature of deep space (the so-called cosmic microwave background) we can get an accurate snapshot of the universe as it was before any stars and galaxies had even formed, just a few hundred thousand years after the Big Bang. This allows us to pinpoint the age of the universe even more precisely. While it is one thing to say that physics allows us to learn about the universe at the shortest and longest distance and time scales, what I find equally remarkable is that we have discovered laws of physics that apply across the entirety of these ranges.

The fact that we can learn about the ingredients of the universe just by studying the light that reaches us from space is one of the most beautiful notions in science. The other piece of evidence in support of the Big Bang—the discovery of which in 1964 finally confirmed the theory beyond reasonable doubt—is the existence of the so-called cosmic microwave background (or CMB) radiation. This ancient light that fills all of space originated at a time, not long after the Big Bang, when neutral atoms first formed, during a period in the universe’s history called the ‘era of recombination’. It took place 378,000 years after the Big Bang, when space had expanded and cooled enough for positively charged protons and alpha particles3 to capture electrons and form hydrogen and helium atoms.


pages: 492 words: 149,259

Big Bang by Simon Singh

Albert Einstein, Albert Michelson, All science is either physics or stamp collecting, Andrew Wiles, anthropic principle, Arthur Eddington, Astronomia nova, Bletchley Park, Boeing 747, Brownian motion, carbon-based life, Cepheid variable, Chance favours the prepared mind, Charles Babbage, Commentariolus, Copley Medal, cosmic abundance, cosmic microwave background, cosmological constant, cosmological principle, dark matter, Dava Sobel, Defenestration of Prague, discovery of penicillin, Dmitri Mendeleev, Eddington experiment, Edmond Halley, Edward Charles Pickering, Eratosthenes, Ernest Rutherford, Erwin Freundlich, Fellow of the Royal Society, Ford Model T, fudge factor, Hans Lippershey, Harlow Shapley and Heber Curtis, Harvard Computers: women astronomers, heat death of the universe, Henri Poincaré, horn antenna, if you see hoof prints, think horses—not zebras, Index librorum prohibitorum, information security, invention of the telescope, Isaac Newton, Johannes Kepler, John von Neumann, Karl Jansky, Kickstarter, Louis Daguerre, Louis Pasteur, luminiferous ether, Magellanic Cloud, Murray Gell-Mann, music of the spheres, Olbers’ paradox, On the Revolutions of the Heavenly Spheres, Paul Erdős, retrograde motion, Richard Feynman, scientific mainstream, Simon Singh, Stephen Hawking, Strategic Defense Initiative, the scientific method, Thomas Kuhn: the structure of scientific revolutions, time dilation, unbiased observer, Wilhelm Olbers, William of Occam

These stars therefore play an important role in determining the cosmic distance scale. CMB radiation See cosmic microwave background radiation. COBE (Cosmic Background Explorer) A satellite launched in 1989 to make accurate measurements of the cosmic microwave background (CMB) radiation. Its DMR detector provided the first evidence for variations in the CMB radiation, indicative of regions in the early universe that led to galaxy formation. Copernican model The Sun-centred model of the universe, proposed by Nicholas Copernicus in the sixteenth century. cosmic microwave background (CMB) radiation A pervasive ‘sea’ of microwave radiation emanating almost uniformly from every direction in the universe, which dates back to the moment of recombination.

Alpher and Herman were making a specific prediction. The universe should be full of a feeble microwave light with a wavelength of one millimetre, and it should be coming from all directions because it had existed everywhere in the universe at the moment of recombination. Anybody who could detect this so-called cosmic microwave background radiation (CMB radiation) would prove that the Big Bang really happened. Immortality was waiting for whoever could make the measurement. Unfortunately, Alpher and Herman were completely ignored. Nobody made any serious effort to search for their proposed CMB radiation. There were various reasons why the academic community shunned the prediction of CMB radiation, but first and foremost was the interdisciplinary nature of the research.

Second, attempts to build atoms out of the Big Bang had hiccupped at helium, which was embarrassing because this implied that the universe should not contain any oxygen, carbon, nitrogen or any other heavy elements. But although the outlook was grim, the Big Bang was not yet a lost cause. The model could be salvaged and its credibility boosted if somebody could detect the cosmic microwave background radiation predicted by Alpher and Herman. Unfortunately, nobody could be bothered to look for it. Meanwhile, the situation for those who supported the idea of an eternal universe was looking more positive. They were about to fight back with their own revamped model. A team of cosmologists based in Britain were developing a theory that not only gave rise to an eternal universe, but was also capable of explaining Hubble’s observations of redshifts.


pages: 340 words: 91,416

Lost in Math: How Beauty Leads Physics Astray by Sabine Hossenfelder

Adam Curtis, Albert Einstein, Albert Michelson, anthropic principle, Arthur Eddington, Brownian motion, clockwork universe, cognitive bias, cosmic microwave background, cosmological constant, cosmological principle, crowdsourcing, dark matter, data science, deep learning, double helix, game design, Henri Poincaré, Higgs boson, income inequality, Intergovernmental Panel on Climate Change (IPCC), Isaac Newton, Johannes Kepler, Large Hadron Collider, Murray Gell-Mann, Nick Bostrom, random walk, Richard Feynman, Schrödinger's Cat, Skype, Stephen Hawking, sunk-cost fallacy, systematic bias, TED Talk, the scientific method

Its wavelength is now a few millimeters, far outside the visible range and instead in the microwave-range. This cosmic microwave background (CMB) is measurable, and it’s cosmologists’ most precious source of information. The mean temperature of the CMB is about 2.7 Kelvin, not far above absolute zero. But around the mean temperature are tiny deviations, about 0.003 percent of the absolute temperature. These deviations come from spots that were a little hotter or colder than average in the early universe. The fluctuations in the CMB temperature therefore encode fluctuations in the hot soup, which is what seeded galaxies. Armed with that knowledge, we can use the cosmic microwave background to infer the history of the universe, as I have described above.

The question then boils down to how plausible it is that new insights will emerge from this approach, and that returns me to the problem that sent me on this trip: how do we assess the promise of a theory that has no observational evidence speaking for it? Not all variants of the multiverse are entirely untestable. In eternal inflation, for example, our universe could have collided with another universe in the past, and such a “bubble collision” could have left an observable signature in the cosmic microwave background. It’s been looked for and hasn’t been found. This doesn’t rule out the multiverse, but it rules out that there has been such a collision. Other physicists have argued that some multiverse variants might give rise to a distribution of small black holes in our universe, which has consequences that might become observable soon.20 But a multiverse prediction that doesn’t come true merely means that we need a probability distribution to make the non-observed phenomenon unlikely, so let’s look for a distribution that works.

In the four years after the firewall paper was published, it’s been cited more than five hundred times, but no agreement what to do about it has been reached. The temperature of solar-mass and supermassive black holes is so small it can’t be measured—it is much below the already tiny temperature of the cosmic microwave background. The black holes we can observe at present gain more mass by swallowing their environment than they lose by Hawking radiation. There is thus no way to experimentally probe any of the attempts to understand black hole evaporation. It’s a pure math problem with no risk of interference by data.


pages: 203 words: 63,257

Neutrino Hunters: The Thrilling Chase for a Ghostly Particle to Unlock the Secrets of the Universe by Ray Jayawardhana

Albert Einstein, Alfred Russel Wallace, anti-communist, Arthur Eddington, cosmic microwave background, dark matter, Eddington experiment, Ernest Rutherford, Higgs boson, invention of the telescope, Isaac Newton, it's over 9,000, Johannes Kepler, Large Hadron Collider, Magellanic Cloud, New Journalism, race to the bottom, random walk, Richard Feynman, Schrödinger's Cat, seminal paper, Skype, South China Sea, Stephen Hawking, time dilation, undersea cable, uranium enrichment

Findings of NASA’s Wilkinson Microwave Anisotropy Probe (WMAP), a space observatory mapping the tiny ripples in the afterglow of the big bang, have cast doubt on the existence of a fourth neutrino type, however. The pattern of fluctuations in the cosmic microwave background holds clues to the stew of particles that existed in the early universe. Cosmologists who analyzed the full nine years of WMAP data concluded that there were most likely only three neutrino families at that time. In March 2013, scientists released maps of the cosmic microwave background that are even more exquisite, made by the European Space Agency’s Planck spacecraft. Again, they did not find evidence for sterile neutrinos, disappointing some researchers who had hoped for a more exciting result.

They could reveal how the universe came to be dominated by matter over antimatter, as we discussed in the last chapter, and could also help us understand the growth of large-scale cosmic structures such as clusters of galaxies. In fact, one of the best limits on the absolute mass of the neutrino comes from comparing the distribution of galaxies in space to the pattern of ripples in the big bang’s afterglow called the cosmic microwave background. According to Licia Verde of the University of Barcelona in Spain, future sky surveys offer our best hope for pinning down the neutrino mass. “If the total mass is below 0.2 electron volts … then no planned neutrino experiment can determine the neutrino mass in a model-independent way,” she explains.

Data from the KamLAND experiment, which measured antineutrinos from nuclear reactors, provided independent confirmation of neutrino oscillations. 2002: Ray Davis and Masatoshi Koshiba won shares of the Nobel Prize for their roles in the detection of neutrinos from the Sun and Supernova 1987A. 2005: KamLAND researchers reported measuring “geoneutrinos” produced by radioactive elements in the Earth’s interior. 2011–2012: Tokai-to-Kamioka (T2K), Double Chooz, and RENO collaborations presented evidence that the third mixing angle (θ13) is nonzero, and the Daya Bay experiment measured its value. 2012: Two experiments at the Large Hadron Collider at CERN discovered the long-sought Higgs boson, confirming a key prediction of the standard model. 2013: Planck spacecraft’s observations of the cosmic microwave background favored the existence of only three flavors of light neutrinos, and provided a new limit on the sum total of the three neutrino masses when combined with other cosmological data. GLOSSARY alpha ray (or alpha particle): A bundle comprising two protons and two neutrons; the same as the nucleus of helium.


What We Cannot Know: Explorations at the Edge of Knowledge by Marcus Du Sautoy

Albert Michelson, Andrew Wiles, Antoine Gombaud: Chevalier de Méré, Arthur Eddington, banking crisis, bet made by Stephen Hawking and Kip Thorne, Black Swan, Brownian motion, clockwork universe, cosmic microwave background, cosmological constant, dark matter, Dmitri Mendeleev, Eddington experiment, Edmond Halley, Edward Lorenz: Chaos theory, Ernest Rutherford, Georg Cantor, Hans Lippershey, Harvard Computers: women astronomers, heat death of the universe, Henri Poincaré, Higgs boson, invention of the telescope, Isaac Newton, Johannes Kepler, Large Hadron Collider, Magellanic Cloud, mandelbrot fractal, MITM: man-in-the-middle, Murray Gell-Mann, music of the spheres, Necker cube, Paul Erdős, Pierre-Simon Laplace, quantum entanglement, Richard Feynman, seminal paper, Skype, Slavoj Žižek, stem cell, Stephen Hawking, technological singularity, Thales of Miletus, Turing test, wikimedia commons

Once the black holes or pebbles have disappeared, we will have a pattern of ripples that results from these interacting expanding circles. Penrose believes that this is something that we could look for in the cosmic microwave background radiation, the radiation left over after the Big Bang that started our universe. Although the fluctuations across this radiation look random, perhaps some of them are the result of black holes bouncing off each other towards the end of the last aeon. The trouble is that the cosmic microwave background radiation is notoriously difficult to analyse, partly because there isn’t enough of it. You may consider this crazy, given that it makes up the surface of the sphere enclosing the observable universe.

It took 378,000 years following the Big Bang before the density of particles dropped sufficiently for the first photons to start their uninterrupted journey through space. This is when space suddenly had enough room for these photons to zip through the universe without running into something which might absorb them. These first photons of light that are visible make up what we call the cosmic microwave background radiation, and they represent the furthest that we can see into space. They are like a cosmic fossil telling us about the early universe. Those first photons that we see today in the microwave background radiation were only 42 million light years away from the Earth when they started their journey.

Stars will seem to go out because the wavelength of light is so elongated that we can no longer detect it. This will also affect what we can identify of the microwave background radiation: the wavelength of those early photons will have been stretched so much that they are almost impossible to detect. With the cosmic microwave background radiation redshifted to such an extent that it can no longer be detected and galaxies having disappeared from view, it is amazing to think that cosmologists in the future may have no evidence to suggest that we live in an expanding universe. Future civilizations will perhaps return to the model of the universe held by the ancient world: our local galaxy surrounded by the void – everything contained in the paper icosahedron I made to navigate space.


Wonders of the Universe by Brian Cox, Andrew Cohen

a long time ago in a galaxy far, far away, Albert Einstein, Albert Michelson, Apollo 11, Arthur Eddington, California gold rush, Cepheid variable, cosmic microwave background, dark matter, Dmitri Mendeleev, Eddington experiment, Eyjafjallajökull, Ford Model T, heat death of the universe, Higgs boson, Isaac Newton, James Watt: steam engine, Johannes Kepler, Karl Jansky, Large Hadron Collider, Magellanic Cloud, Mars Rover, Neil Armstrong, Stephen Hawking, the scientific method, time dilation, trade route

Only a fraction of the light present in the Universe is visible to the naked eye, though; if we could see all of it, the sky would be ablaze with this primordial light both day and night. However, some of this hidden light is not quite a featureless glow; the long wavelength universal glow known as the Cosmic Microwave Background (CMB) in fact displays minute variations in its wavelength. The CMB carries with it an image of our universe as it was just after its birth, and this discovery has provided key evidence that the beginning really did start with the Big Bang. It was at the Big Bang that all of spacetime came into existence.

However, as the Universe has expanded, space has stretched and so too has the light – so much so that the light is no longer in the visible part of the spectrum. It has moved beyond even the infrared, and is now visible to us only in the microwave and radio parts of the spectrum. This faint, long, wavelength universal glow is known as the Cosmic Microwave Background, or CMB, and its discovery in 1964 by Arno Penzias and Robert Wilson was key evidence in proving that the Universe began in a Big Bang Forget state-of-the-art kit, all you need to use to detect hidden forms of light is a simple radio. As you tune, it you will pick up information encoded in a wave of light.

By this time the matter in these regions was dense enough and cool enough to begin to collapse under its own gravity, leading to the first star formation and the emergence of the cores of the galaxies, including our own Milky Way. This is the cosmic epoch we see in the most redshifted Hubble Space Telescope data – the formation of the first galaxies – and their seeds are the minute fluctuations visible in the Cosmic Microwave Background Radiation. This detailed picture of the Universe in its infancy was pieced together from data collected over several years by the Wilkinson Microwave Anisotropy Probe (WMAP). The different colours reveal the 13.7-billion-year-old temperature fluctuations that correspond to the seeds from which the galaxies grew.


pages: 661 words: 169,298

Coming of Age in the Milky Way by Timothy Ferris

Albert Einstein, Albert Michelson, Alfred Russel Wallace, anthropic principle, Arthur Eddington, Atahualpa, Cepheid variable, classic study, Commentariolus, cosmic abundance, cosmic microwave background, cosmological constant, cosmological principle, dark matter, delayed gratification, Eddington experiment, Edmond Halley, Eratosthenes, Ernest Rutherford, Garrett Hardin, Gary Taubes, Gregor Mendel, Harlow Shapley and Heber Curtis, Harvard Computers: women astronomers, Henri Poincaré, invention of writing, Isaac Newton, Johannes Kepler, John Harrison: Longitude, Karl Jansky, Lao Tzu, Louis Pasteur, Magellanic Cloud, mandelbrot fractal, Menlo Park, Murray Gell-Mann, music of the spheres, planetary scale, retrograde motion, Richard Feynman, Search for Extraterrestrial Intelligence, Searching for Interstellar Communications, source of truth, Stephen Hawking, Thales of Miletus, Thomas Kuhn: the structure of scientific revolutions, Thomas Malthus, time dilation, Wilhelm Olbers

Time: 1988 Noteworthy Events: Quasars are detected near the outposts of the observable universe; their redshifts indicate that their light has been traveling through space for some seventeen billion years. Time: 1990 Noteworthy Events: COBE satellite measures cosmic microwave background radiation; confirms that it displays a black-body spectrum as predicted by the hot big-bang model. Time: 1992 Noteworthy Events: COBE satellite data show anisotropies—lumps—in the cosmic microwave background, supporting big-bang prediction that such lumps were the seeds of galaxies and other large-scale cosmic structures. Time: 1998 Noteworthy Events: Astronomers studying Supernovae find evidence that the expansion of the universe is accelerating, rather than slowing down as had been presumed.

Time: 1998 Noteworthy Events: Astronomers studying Supernovae find evidence that the expansion of the universe is accelerating, rather than slowing down as had been presumed. Time: 2000 Noteworthy Events: Measurements of cosmic microwave background anisotropies indicate that cosmic spacetime is flat or nearly so, as predicted by inflationary versions of big-bang theory. Time: 2003 Noteworthy Events: WMAP satellite makes high-precision map of cosmic microwave background, supporting earlier CMB studies and yielding an age for the universe of 13.7 billion years, to a quoted accuracy of one percent. *Most dates—and, for that matter, events—are approximate.

(There are plenty of photons on hand, because the universe is rich in electrically charged particles, which generate electromagnetic energy, the quantum of which is the photon.) It is this great gush of light, much redshifted and thinned out by the subsequent expansion of the universe, that human beings billions of years hence will detect with radiotelescopes and will call the cosmic microwave background radiation. This, the epoch of “let there be light,” has a significant effect on the structure of matter. Electrons, relieved from constant harassment by the photons, are now free to settle into orbit around nuclei, forming hydrogen and helium atoms. With atoms on hand, chemistry can proceed, to lead, eons hence, to the formation of alcohol and formaldehyde in interstellar clouds and the building of biotic molecules in the oceans of the early earth.


pages: 334 words: 100,201

Origin Story: A Big History of Everything by David Christian

"World Economic Forum" Davos, Albert Einstein, Anthropocene, Arthur Eddington, butterfly effect, Capital in the Twenty-First Century by Thomas Piketty, Cepheid variable, colonial rule, Colonization of Mars, Columbian Exchange, complexity theory, cosmic microwave background, cosmological constant, creative destruction, cuban missile crisis, dark matter, demographic transition, double helix, Easter island, Edward Lorenz: Chaos theory, Ernest Rutherford, European colonialism, Francisco Pizarro, Haber-Bosch Process, Harvard Computers: women astronomers, Isaac Newton, James Watt: steam engine, John Maynard Keynes: Economic Possibilities for our Grandchildren, Joseph Schumpeter, Kickstarter, Kim Stanley Robinson, Large Hadron Collider, Late Heavy Bombardment, Marshall McLuhan, microbiome, nuclear winter, Paris climate accords, planetary scale, rising living standards, Search for Extraterrestrial Intelligence, Stephen Hawking, Steven Pinker, Stuart Kauffman, TED Talk, The Wealth of Nations by Adam Smith, Thomas Kuhn: the structure of scientific revolutions, trade route, Yogi Berra

We don’t know what Goldilocks conditions allowed a universe to emerge, and we still can’t explain it any better than novelist Terry Pratchett did when he wrote, “The current state of knowledge can be summarized thus: In the beginning, there was nothing, which exploded.”7 Threshold 1: Quantum Bootstrapping a Universe The bootstrap for today’s most widely accepted account of ultimate origins is the idea of a big bang. This is one of the major paradigms of modern science, like natural selection in biology or plate tectonics in geology.8 It wasn’t until the early 1960s that the crucial pieces of the big bang story emerged. That’s when astronomers first detected the cosmic microwave background radiation (CMBR)—energy left over from the big bang and present everywhere in today’s universe. Though cosmologists still struggle to understand the moment when our universe appeared, they can tell a rollicking story that begins about (deep breath, and I hope I’ve got this precise) a billionth of a billionth of a billionth of a billionth of a billionth of a second after the universe appeared (around 10-43 of a second after time zero).

Photons, the carriers of the electromagnetic force, could now flow freely through an electrically neutral mist of atoms and dark matter. Today, astronomers can detect the results of this phase change, because photons that escaped the plasma generated a thin background hum of energy (the cosmic microwave background radiation) that still pervades the entire universe. Our origin story has crossed its first threshold. We have a universe. Already it has some structures with distinctive emergent properties. It has distinct forms of energy and matter, each with its own personality. It has atoms. And it has its own operating rules.

Today we know of no astronomical objects older than 13.82 billion years, which is a strong argument in favor of big bang cosmology. After all, if the universe were unchanging and eternal, there really should be lots of objects more than 13.8 billion years old. The clinching evidence came in the mid-1960s, and it involved the discovery of cosmic microwave background radiation (CMBR). This is the radiation released when the first atoms formed, about 380,000 years after the big bang. The CMBR turned out to be the crucial proof of an expanding universe. Why? By the 1940s, some astronomers and physicists were impressed enough by Hubble’s data that they tried to figure out what might have happened if there really had been a big bang.


pages: 476 words: 118,381

Space Chronicles: Facing the Ultimate Frontier by Neil Degrasse Tyson, Avis Lang

Albert Einstein, Apollo 11, Apollo 13, Arthur Eddington, asset allocation, Berlin Wall, Boeing 747, carbon-based life, centralized clearinghouse, cosmic abundance, cosmic microwave background, dark matter, Gordon Gekko, high-speed rail, informal economy, invention of movable type, invention of the telescope, Isaac Newton, James Webb Space Telescope, Johannes Kepler, Karl Jansky, Kuiper Belt, Large Hadron Collider, Louis Blériot, low earth orbit, Mars Rover, Mars Society, mutually assured destruction, Neil Armstrong, orbital mechanics / astrodynamics, Pluto: dwarf planet, RAND corporation, Ronald Reagan, Search for Extraterrestrial Intelligence, SETI@home, space junk, space pen, stem cell, Stephen Hawking, Steve Jobs, the scientific method, trade route

Without a doubt, the most important single discovery in astrophysics was made with a microwave telescope: the heat left over from the origin of the universe. In 1964 this remnant heat was measured in a Nobel Prize–winning observation conducted at Bell Telephone Laboratories by the physicists Arno Penzias and Robert Wilson. The signal from this heat is an omnipresent, omnidirectional ocean of light—often called the cosmic microwave background—that today registers about 2.7 degrees on the “absolute” temperature scale and is dominated by microwaves (though it radiates at all wavelengths). This discovery was serendipity at its finest. Penzias and Wilson had humbly set out to find terrestrial sources of interference with microwave communications; what they found was compelling evidence for the Big Bang theory.

Ultraviolet and X-rays are the predominant form of energy released by material just before it descends into the black hole. It’s worth remembering that the act of discovery does not require that you understand, either in advance or after the fact, what you’ve discovered. That’s what happened with the cosmic microwave background. It also happened with gamma-ray bursts. Mysterious, seemingly random explosions of high-energy gamma rays scattered across the sky were first detected in the 1960s by satellites searching out radiation from clandestine Soviet nuclear-weapons tests. Only decades later did spaceborne telescopes, in concert with ground-based follow-up observations, show them to be the signature of distant stellar catastrophes.

A good gravitational-wave telescope would be able to detect black holes orbiting one another, and distant galaxies merging. One can even imagine a time in the future when gravitational events in the universe—collisions, explosions, collapsed stars—are routinely observed. In principle, we might one day see beyond the opaque wall of cosmic microwave background radiation to the Big Bang itself. Like Magellan’s crew, who first circumnavigated Earth and saw the limits of the globe, we would then have reached and discovered the limits of the known universe. Discovery and Society As a surfboard rides a wave, the Industrial Revolution rode the eighteenth and nineteenth centuries on the crest of decade-by-decade advances in people’s understanding of energy as a physical concept and a transmutable entity.


pages: 225 words: 65,922

A Grand and Bold Thing: An Extraordinary New Map of the Universe Ushering by Ann K. Finkbeiner

Albert Einstein, cosmic microwave background, cosmological constant, dark matter, digital map, Galaxy Zoo, Isaac Newton, Kickstarter, Magellanic Cloud, Skype, slashdot

After running hoggPT, Sloanies understood that nothing was in the way of 1 percent precision except good software. So instead of using the photometric telescope, which was not as good as the 2.5-meter with Jim’s camera, they could write software that would let the 2.5-meter calibrate its own excellent self. Finkbeiner and Schlegel knew of a technique used by astronomers looking in the cosmic microwave background for 1-in-100,000 variations, and thought they could apply the same technique to the Sloan. The stripes of the sky drift scanned by the 2.5-meter are taken on different nights. And from night to night, the camera and telescope electronics change minutely, the mirror collects a little more dust, one CCD might have gotten a thousandth of a degree warmer—the upshot being that a twelfth-magnitude star in one stripe looks slightly brighter or dimmer than a twelfth-magnitude star on another stripe, that is, the stripes have different photometric zero points.

The universe kept expanding, and radiation kept cooling, its wavelength getting longer and longer until it reached the long wavelengths of microwaves. And its pattern of ripples, in a map made 13 billion years later by a satellite called the Wilkinson Microwave Anisotropy Probe (WMAP), looked like hot and cold patches in the cosmic microwave background, accurate to an astonishing 1 percent. That last pattern of little ripples was not only in the radiation, it was also in the ordinary matter. And after the radiation decoupled from the matter, the matter ripples had been free to feel gravity; they collapsed in on themselves, attracted more matter, grew and turned themselves into galaxies.

—Matt Mountain, director, Space Telescope Science Institute BY 2001, the year after the Sloan officially began, the survey was already in a standard textbook. By the end of 2002, Sloanies had written 215 scientific papers with Sloan data. By the end of 2003, Science magazine’s Breakthrough of the Year was the new standard model of the universe revealed by comparing the cosmic microwave background as measured by NASA’s WMAP satellite with the large-scale structure as mapped by the Sloan. By mid-2004, Sloanies had written 400 papers, and non-Sloanies using Sloan data another 125. In August, Scot Kleinman, an Apache Point observer, went to the Fourteenth European White Dwarf Workshop in Germany and reported that nearly 40 percent of the talks mentioned the Sloan.


pages: 279 words: 75,527

Collider by Paul Halpern

Albert Einstein, Albert Michelson, anthropic principle, cosmic microwave background, cosmological constant, dark matter, Dr. Strangelove, Ernest Rutherford, Gary Taubes, gravity well, Herman Kahn, Higgs boson, horn antenna, index card, Isaac Newton, Large Hadron Collider, Magellanic Cloud, pattern recognition, Plato's cave, Richard Feynman, Ronald Reagan, statistical model, Stephen Hawking, Strategic Defense Initiative, time dilation

“Condensed-matter physics is at the heart of modern technology, of computer chips, of all the electronic gadgets behind the new industrial order. Yet relative to the big projects, it’s neglected.”15 Another leading critic of “big science,” who was skeptical about channeling so much funding into the Super Collider, was Arno Penzias, codiscoverer of the cosmic microwave background. Penzias said, “One of the big arguments for the S.S.C. is that it will inspire public interest in science and attract young people to the field. But if we can’t educate them properly because we’ve spent our money on big machines instead of universities, where’s the point? As a nation we must take a new look at our scientific priorities and ask ourselves what we really want.”16 On the other hand, who could anticipate what would have been the long-term spin-offs of the SSC?

Similarly, astronomers rely on standard candles such as Supernova Ia to gauge distances for which there would be no other measure. The team led by Perlmutter, called the Supernova Cosmology Project (SCP), has deep connections with the world of particle physics. First of all, along with George Smoot’s Nobel Prize- winning exploration of the cosmic microwave background using the Cosmic Background Explorer satellite, it represents an expansion of the mission of Lawrence’s lab. Given that Lawrence was always looking for connections and applications, such a broad perspective perfectly suits the former Rad Lab. Also, one of the SCP’s founding members is Gerson Goldhaber, who won acclaim for his role in the Stanford Linear Accelerator Center- led group that jointly discovered the J/psi particle.

Its name harks back to the four classical elements of Empedocles—with quintessence representing the fifth. The distinction between a cosmological constant and quintessence is that while the former would be as stable as granite, the latter could vary from place to place and time to time like moldable putty. Findings of the Wilkinson Microwave Anisotropy Probe of the cosmic microwave background support the idea that the cosmos is a mixture of dark energy, dark matter, and visible matter—in that order. The satellite picture has not been able to tell us, however, what specific ingredients constitute the duet of dark substances. Physicists hope that further clues as to the nature of dark energy, as well as dark matter, will turn up at the LHC.


pages: 335 words: 95,280

The Greatest Story Ever Told--So Far by Lawrence M. Krauss

Alan Greenspan, Albert Einstein, complexity theory, cosmic microwave background, cosmological constant, dark matter, Ernest Rutherford, Higgs boson, How many piano tuners are there in Chicago?, Isaac Newton, Large Hadron Collider, Magellanic Cloud, Murray Gell-Mann, Plato's cave, public intellectual, RAND corporation, Richard Feynman, Richard Feynman: Challenger O-ring, the scientific method, time dilation

Not only have our explorations revealed the existence of dark matter, which, as I have described, is likely composed of new elementary particles not yet observed in accelerators—although we may be on the cusp of doing so—but far more exotic still, we have discovered that the dominant energy of the universe resides in empty space—and we currently have no idea how it arises. Our observations have now taken us back to the neonatal universe. We have observed the fine details of radiation, called the cosmic microwave background, which emanates from a time when the universe was merely three hundred thousand years old. Our telescopes take us back to the earliest galaxies, which formed perhaps a billion years after the Big Bang, and have allowed us to map huge cosmic structures containing thousands of galaxies and spanning hundreds of millions of light-years across, sprinkled amid the hundred billion or so galaxies in the visible universe.

Even better, a year after Guth proposed his picture, a number of groups performed calculations of what would happen to particles and fields as the universe rapidly expanded during inflation. They discovered that small inhomogeneities resulting from quantum effects at early times would then be “frozen in” during inflation. After inflation ended, these small inhomogeneities could grow to produce galaxies, stars, planets, etc., and would also leave an imprint in the cosmic microwave background (CMB) radiation that resembles precisely the pattern that has since been measured. However, it is also possible, by using different inflationary models, to get different predictions for the CMB anisotropies (inflation is, at this point, more of a model than a theory, and since no unique Grand Unified Theory transition is determined by experiment, many different variants might work).

See Plato’s cave allegory Chadwick, James, 117–19, 121, 123, 128 Chandrasekhar, Subrahmanyan (“Chandra”), 153 Chew, Geoffrey, 192, 235 Chopra, Deepak, 86, 99 Clay Mathematics Institute, 244 Cline, David, 251 CMS detector, CERN, 263–64, 267–68, 272 CNO cycle, 136 coincidence methods, 116 Coleman, Sidney, 220, 238, 239 color photograph, Maxwell’s work on, 33, 35 Columbus, Christopher, 52 Condon, Edward, 169 Cooper, Leon, 184, 185 Cooper pairs, 185–86, 187–88, 197–98, 199 Cornell, Eric, 186 cosmic microwave background (CMB) radiation, 290, 292–93 cosmological constant, 295–96 Coulomb, Charles de, 30 creativity, 51–52 Curie, Marie, 117, 119 D Darwin, Charles, 5, 20, 21 Davis, Ray, 280–81 Davy, Humphry, 25, 26 Dawkins, Richard, 22 Dent, James, 297 Descartes, René, 22 Dick, Philip K., 12 dimensional analysis, 36 Dirac, Paul Adrien Maurice, 85, 91–95 antiparticle discovery by, 95, 97, 114, 115 combination of quantum mechanics and relativity by, 92, 95, 151 Einstein on, 91 electron equation of, 92–94, 99, 114 Feynman compared with, 97–98 Feynman’s first meeting with, 92 Feynman’s research based on, 99 mathematical prediction of new particle by, 93–94, 143 personality of, 91–92, 98 quantum theory of radiation and, 98, 99 Dirac equation, 92–94 displacement current, 37 double-slit experiment with light, 74–76, 77, 88 Dyson, Freeman, 85, 106, 235 E Eddington, Sir Arthur Stanley, 135 Eightfold Way (Gell-Mann), 193–94 Einstein, Albert, 4, 42, 49–68 background of, 46 Bose-Einstein condensation research by, 185–86 clocks relative to moving objects (time dilation) research of, 58–61 creativity and intellectual confidence of, 52 Dirac described by, 91 Galileo-Maxwell paradox resolution by, 49–54, 58, 64–65 General Theory of Relativity of, 10, 42, 68, 85, 110, 126, 295 gravity and, 114 inferences about real world using measurements and, 61–65 letter to President Roosevelt from, 129 Minkowski’s four-dimensional “space-time” theory and, 66–68, 71 Planck’s relationship with, 80–81 relativity discovery of, 95 ruler measurement example of relativity and, 65–67 space and time theory of, 55–58, 66, 68 Special Theory of Relativity of, 68, 80 electric charges Faraday’s research on, 25–30, 37–38, 68, 195 quantum electrodynamics (QED) and symmetry of, 106, 107 electric fields, Farady’s visualization of action of, 27–30, 193–94 electricity, Maxwell’s theory of magnetism and, 36–39, 48, 94, 218, 219 electromagnetic waves calculation of speed of, 42, 50–51 Faraday cage shield against, 195 Maxwell on light as, 42, 219 Maxwell’s discovery of, 41, 42, 46, 74 as particles, 81, 82 superconductors and different polarizations of, 199–200 electromagnetism gauge symmetry in quantum theory of, 111 Maxwell’s research on, 39–43, 46, 50–51, 68, 74, 109 electrons Dirac’s equation describing, 92–94 electric charge configurations of, 93–94 Feynman’s measurement of trajectories of, 100–102 mathematical expression of wave function of, 77 spin angular momentum of, 127, 164 spin configurations of, 93 Young’s double-slit experiment with beams of, 75–77 electroweak symmetry, 254, 277, 282, 283–84, 285, 287, 290, 294, 296–97 electroweak theory, 229, 278 publications questioning, 227 validation of, 228, 259 electroweak unification, 216–17, 218, 222, 231, 250, 259, 278 Englert, François, 206–7, 211, 271 European Organization for Nuclear Research (CERN), 225, 236 as dominant particle physics laboratory, 259, 262 Gargamelle detector at, 223–24, 225 Large Electron-Positron (LEP) Collider at, 262–63 Large Hadron Collider (LHC) at, 61, 263–74, 275, 284, 285, 286–87, 299 proton accelerator at, 222–23, 251 Super Proton Synchrotron (SPS) at, 251–52, 260, 262 evolution, 3, 5, 20 exclusion principle (Pauli), 123, 127 F Faraday, Michael, 24–30, 38 background of, 24–25 impact of discoveries of, 30, 31, 46, 68, 109 magnetic induction discovery of, 26–27, 30, 36 Maxwell’s meetings with, 36 Maxwell’s research and, 37, 38 research on electric charges and magnets by, 25–30, 37–38, 68, 195 visualization of action of fields by, 27–30, 193–94 Faraday cage, 195 Feenberg, Eugene, 169 Fermat, Pierre de, 98–99 Fermi, Enrico, 125–32 artificial radioactivity and, 128 background of, 126–27 experimental approach to physics used by, 129–30, 142 impact of research of, 125–26 neutrino named by, 123, 127, 130 neutron decay theory of, 127–29, 130–32, 136, 142, 143, 145–46, 149 nuclear research in Manhattan Project and, 129 potential dangers in releasing energy of atomic nucleus and, 129 statistical mechanics established by, 127 weak interaction theory of, 161, 162, 164 Yang’s work with, 153 Yukawa’s research and, 143, 144, 145–46 Fermi interaction, 136 Fermilab (Fermi National Accelerator Laboratory, Batavia, Illinois), 31, 251, 261, 262–63 fermions, 155, 185, 186, 233, 282, 283 Fermi Problems, 130 Feynman, Richard, 85, 97–106, 125, 159, 160, 228 antiparticles and, 100, 102 atomic bomb research of, 134 Bethe’s approach and, 134 Bjorken’s research on quarks and, 233 Block’s research on weak interaction and, 157–58 Dirac compared with, 97–98 Dirac’s first meeting with, 92 Dirac’s research used by, 99 electron trajectory measurement in time and, 100–102, 130 quantum electrodynamics (QED) and, 99, 102–6, 142, 175, 221, 235 research approach used by, 175, 245 on understanding quantum mechanics, 71 weak interaction research of, 159, 163–64 Fizeau, Hippolyte, 42 Fourier analysis, 126 Franklin, Benjamin, 170–71 Friedman, Jerry, 160, 232–33 G Galileo Galilei, 5, 21, 45–48 Catholic Church’s trial of, 45, 47 Einstein on Galileo-Maxwell paradox, 48–54, 58, 64–65 motion and rest state theory of, 45–48, 49, 70, 97, 168, 245 gamma rays, 116 neutron mass measurement using, 119 Rutherford’s discovery of, 119–20 Gargamelle detector, CERN, 223–24, 225 Garwin, Dick, 160 gauge bosons, 214, 217, 233, 254, 277, 278 gauge invariance, 109, 172, 198, 199, 228 gauge symmetry chessboard analogy to explain conservation of energy in, 108–9 description of, 108 differences in philosophical viewpoints on, 109–10 quantum electrodynamics and, 111–12 understanding nature of reality using, 110 Weyl’s naming of, 110–11 gauge transformation, 109 Geiger, Hans, 116, 118 Gell-Mann, Murray Glashow’s work with, 178 quarks and, 163, 193–94, 231–32, 233–34, 236, 240 scale equations of, 237 symmetry scheme of, 193, 214 weak interaction research of, 163–64 Yang-Mills theory and, 240–41 General Theory of Relativity (Einstein), 10, 42, 68, 85, 110, 126, 295 Genesis, 19, 43 Georgi, Howard, 276–77, 278, 279 Gilbert, Walter, 204–5 Gladstone, William, 26 Glashow, Sheldon, 177–79 approach to research used by, 178 background of, 177–78, 212 CERN research and, 252 electroweak unification and, 216–17, 218, 222, 278 Grand Unification and, 277, 279 on Higgs’s research, 207, 254, 276 Krauss’s career and, 213, 214 neutral currents and, 222, 225, 234 quarks and, 234, 241 Scottish Universities Summer School courses from, 203–4 weak interaction research of, 178–79, 207, 219, 223, 225, 276–77 Weinberg’s research and, 212–13, 218 Gold, Tommy, 113, 121 Goldstone, Jeffrey, 188, 203, 204, 206, 214 Goldstone bosons, 206, 214–15, 217 Grand Unified Theory (GUT), 277–79, 282–83, 290, 291, 292–93, 294 gravity dimensional analysis of, 36 Einstein’s research on, 114 Newton’s research on, 5, 27–28, 38, 48 quantum theory of, 110 Greenberg, Oscar, 233, 240 Gross, David, 235–41, 277 asymptotic freedom discovery of, 238–41, 245 background of, 235 Gell-Mann’s influence on, 236 quantum chromodynamics and, 241 research on quarks by, 236–37 scaling research of, 237–39 Yang-Mills theory and, 239, 240–41 group theory, 276 Guralnik, Gerald, 207 Gürsey, Feza, 123 Guth, Alan, 290, 291–92 H Hagen, C.


pages: 209 words: 68,587

Stephen Hawking by Leonard Mlodinow

Albert Michelson, cosmic microwave background, cosmological constant, cosmological principle, dark matter, Dmitri Mendeleev, do what you love, Ernest Rutherford, Eyjafjallajökull, Isaac Newton, Murray Gell-Mann, Nelson Mandela, Richard Feynman, Richard Feynman: Challenger O-ring, Stephen Hawking, the scientific method

Nor did anyone, in the early 1960s, know of any indirect way to test a theory of the universe’s origin. As a result of such issues, physicists tended to consider cosmology a pseudoscience, a mathematical playground outside the realm of experimental testing. That would begin to change after the accidental discovery in 1964 of the faint afterglow left over from the big bang, called the cosmic microwave background radiation. When Stephen was starting out at Cambridge, that was still a year or two away. Another issue back then was the difficulty of understanding just what Einstein’s theory actually does predict. Like any theory in physics, Einstein’s is a scheme of mathematics and rules about what it represents and how to apply it.

Nuclear physics had shown that, in the first minutes after that event, the extremes of temperature and pressure would cause some hydrogen nuclei (protons) to fuse together, forming helium. Detailed calculations had indicated that we ought to find about one helium nucleus for every ten hydrogen nuclei, and astronomical observation confirmed this. The big bang theory also predicted that some radiation from that event should persist to this day—the cosmic microwave background radiation. That, too, had been discovered, two years before Stephen’s dissertation. But the mathematics proving that the big bang is a necessity of Einstein’s equations—that came from Stephen, in his first major foray into the world of physics. *1 By “unchanging” they meant on the cosmic scale.

As is usual in work on the frontiers of physics, some colleagues were skeptical of the assumptions he’d made. Some were suspicious of his mathematical approximations. Some didn’t understand his theory. And some simply found alternative theories more convincing. To this day the jury is still out regarding both initiatives. Stephen proposed that analysis of the cosmic microwave background radiation might provide supporting evidence, but such an analysis will depend upon technology that doesn’t yet exist. So, like most theories in modern cosmology, the no-boundary proposal and top-down cosmology are mathematically intriguing but difficult to test. * * * Most days, when Stephen got to the office in the late morning, he’d reply to a few emails and would read any articles of interest that had been posted on the ArXiv.org website.


pages: 194 words: 63,798

The Milky Way: An Autobiography of Our Galaxy by Moiya McTier

affirmative action, Albert Einstein, Arthur Eddington, Burning Man, Cepheid variable, cosmic microwave background, cosmological constant, dark matter, Eddington experiment, Edward Charles Pickering, Ernest Rutherford, Harlow Shapley and Heber Curtis, Harvard Computers: women astronomers, heat death of the universe, Henri Poincaré, Higgs boson, Isaac Newton, James Dyson, James Webb Space Telescope, Karl Jansky, Kickstarter, Large Hadron Collider, Magellanic Cloud, overview effect, Pluto: dwarf planet, polynesian navigation, Search for Extraterrestrial Intelligence, Stephen Hawking, the scientific method

Falling deeper into astrophysics felt like learning how to talk to space in a whole new way, one that let me listen a little bit more to what the universe was saying instead of making up responses in my head. I was learning the language of gravity, cosmic rays, and nuclear fusion. With my new dictionary in hand, I set out to research as many different aspects of space as possible: star formation, the cosmic microwave background, X-rays from distant quasars, exoplanet characterization, stellar dynamics, and the chemical evolution of galaxies. At the same time, following my love of mythology, I was learning about the stories that cultures used as devices to entertain, educate, and explain. Fairy tales to pass a night by the fire, fables to share a community’s values with the next generation, and myths to make sense of the world around them.

You humans have always relied too heavily on your sight, especially when there’s so much to feel in space. Take the wealth of heat and energy present at the very beginning of the universe, for example. It didn’t disappear, it just dispersed. And we can still detect the heat signature today, all around us in the universe. Your astronomers call it the cosmic microwave background, or CMB. If you’re reading this actively—by which I mean you’re thinking about what you read instead of just letting the words pass in one ear and out the other, figuratively speaking unless this is one of those audiobooks—you might be confused by the name of that radiation because heat is usually observed in the infrared part of the electromagnetic spectrum, not the microwave.

Radio waves have very long wavelengths and low energies, while gamma rays have short wavelengths and high energies. Your kind can see only in a very narrow band of this spectrum in between those extremes. What a waste. Back to my point about the CMB: heat usually shows up as infrared light. But it’s called the cosmic microwave background because the universe has expanded since the Big Bang, and the wavelength of that early light has expanded as well, pushing it out of the infrared region of the electromagnetic spectrum and into the microwave. The CMB shows tiny temperature fluctuations that point out which spots were ever so slightly warmer, and therefore denser, than their surroundings.


Life Is Simple by Johnjoe McFadden

Albert Einstein, Albert Michelson, Alfred Russel Wallace, animal electricity, anthropic principle, Astronomia nova, Bayesian statistics, Brownian motion, Commentariolus, complexity theory, cosmic microwave background, cosmological constant, cosmological principle, COVID-19, dark matter, double helix, Edmond Halley, en.wikipedia.org, epigenetics, Ernest Rutherford, Fellow of the Royal Society, gentleman farmer, Gregor Mendel, Henri Poincaré, Higgs boson, horn antenna, invention of the printing press, Isaac Newton, James Watt: steam engine, Johann Wolfgang von Goethe, Johannes Kepler, lockdown, music of the spheres, On the Revolutions of the Heavenly Spheres, Plato's cave, retrograde motion, Richard Feynman, the scientific method, Thomas Bayes, Thomas Malthus, William of Occam

The next day, Dicke and his team drove to the Bell laboratories, to admire the horn antenna and take a closer look at the data. They returned convinced that Penzias and Wilson had indeed discovered the microwave remnant of the Big Bang. What most impressed both teams was the smoothness of the cosmic microwave background (CMB), as it was later called. It had, as far as they could tell, exactly the same intensity wherever they looked in the sky. Their discovery earned Penzias and Wilson the Nobel Prize in 1978. About a decade later, NASA launched their Cosmic Background Explorer (COBE) satellite to provide more precise measurements and discovered faint ripples, with variations in radiation intensity of less than one part in 100 thousand, in the CMB.

That is a lot less than the variation in whiteness you would see in the cleanest, whitest sheet of paper that you have ever seen. A decade later, in 1998, the European Space Agency (ESA) launched their own microwave detector into space, the Planck Space Observatory, and confirmed both the faint ripples and the extraordinary uniformity of the CMB. FIGURE 2: Cosmic microwave background. The CMB is a kind of photograph taken of the universe when it was less than the size of the Milky Way. Its uniformity tells us that, at that moment, when the first blast of light emerged from its trillions of atoms, our universe was simple. In fact, the CMB remains the simplest object that we know of today; simpler even than a single atom.

Why has the universe wasted so much of its resources making such a lot of dark and apparently superfluous stuff? In fact, far from being an entity beyond necessity, dark matter has played at least two key roles in our existence. The first was to help make galaxies. This was something of a puzzle because, as Neil Turok noted (see Introduction), the cosmic microwave background (CMB) is extremely smooth, indicating that at its birth the universe was very simple, being very smooth and rather dull. If it had stayed this way, then galaxies and stars could not have formed. However, if the CMB (Figure 2) is examined very closely and its irregularities amplified, then lumps, clumps and strings of slightly denser material are discernible.


pages: 124 words: 40,697

The Grand Design by Stephen Hawking, Leonard Mlodinow

airport security, Albert Einstein, Albert Michelson, anthropic principle, Arthur Eddington, Buckminster Fuller, conceptual framework, cosmic microwave background, cosmological constant, dark matter, fudge factor, invention of the telescope, Isaac Newton, Johannes Kepler, John Conway, John von Neumann, Large Hadron Collider, luminiferous ether, Mercator projection, Richard Feynman, Stephen Hawking, Thales of Miletus, the scientific method, Turing machine

In fact, the term “big bang” was coined in 1949 by Cambridge astrophysicist Fred Hoyle, who believed in a universe that expanded forever, and meant the term as a derisive description. The first direct observations supporting the idea didn’t come until 1965, with the discovery that there is a faint background of microwaves throughout space. This cosmic microwave background radiation, or CMBR, is the same as that in your microwave oven, but much less powerful. You can observe the CMBR yourself by tuning your television to an unused channel—a few percent of the snow you see on the screen will be caused by it. The radiation was discovered by accident by two Bell Labs scientists trying to eliminate such static from their microwave antenna.

Big bang • the dense, hot beginning of the universe. The big bang theory postulates that about 13.7 billion years ago the part of the universe we can see today was only a few millimeters across. Today the universe is vastly larger and cooler, but we can observe the remnants of that early period in the cosmic microwave background radiation that permeates all space. Black hole • a region of space-time that, due to its immense gravitational force, is cut off from the rest of the universe. Boson • an elementary particle that carries force. Bottom-up approach • in cosmology, an idea that rests on the assumption that there’s a single history of the universe, with a well-defined starting point, and that the state of the universe today is an evolution from that beginning.


pages: 695 words: 219,110

The Fabric of the Cosmos by Brian Greene

airport security, Albert Einstein, Albert Michelson, Arthur Eddington, Brownian motion, clockwork universe, conceptual framework, cosmic microwave background, cosmological constant, dark matter, dematerialisation, Eddington experiment, Hans Lippershey, Henri Poincaré, invisible hand, Isaac Newton, Large Hadron Collider, luminiferous ether, Murray Gell-Mann, power law, quantum entanglement, Richard Feynman, seminal paper, Stephen Hawking, time dilation, urban renewal

If your eyes could see light whose wavelength is much longer than that of orange or red, you would not only be able to see the interior of your microwave oven burst into activity when you push the start button, but you would also see a faint and nearly uniform glow spread throughout what the rest of us perceive as a dark night sky. More than four decades ago, scientists discovered that the universe is suffused with microwave radiation—long-wavelength light—that is a cool relic of the sweltering conditions just after the big bang.4 This cosmic microwave background radiation is perfectly harmless. Early on, it was stupendously hot, but as the universe evolved and expanded, the radiation steadily diluted and cooled. Today it is just about 2.7 degrees above absolute zero, and its greatest claim to mischief is its contribution of a small fraction of the snow you see on your television set when you disconnect the cable and turn to a station that isn’t broadcasting.

The properties of these particles and the relationships between them would show unmistakably that they’re all part of the same cosmic score, that they’re all different but related notes, that they’re all distinct vibrational patterns of a single kind of object—a string. For the foreseeable future, this is the most likely scenario for a direct confirmation of string theory. Cosmic Origins As we saw in earlier chapters, the cosmic microwave background radiation has played a dominant role in cosmological research since its discovery in the mid-1960s. The reason is clear: in the early stages of the universe, space was filled with a bath of electrically charged particles—electrons and protons—which, through the electromagnetic force, incessantly buffeted photons this way and that.

By comparing WMAP’s initial results, Figure 14.4b, with COBE’s, Figure 14.4a, you can immediately see how much finer and more detailed a picture WMAP is able to provide. Another satellite, Planck, which is being developed by the European Space Agency, is scheduled for launch in 2007, and if all goes according to plan, will better WMAP’s resolution by a factor of ten. Figure 14.4 (a) Cosmic microwave background radiation data gathered by the COBE satellite. The radiation has been traveling through space unimpeded since about 300,000 years after the big bang, so this picture renders the tiny temperature variations present in the universe nearly 14 billion years ago. (b) Improved data collected by the WMAP satellite.


pages: 283 words: 81,376

The Doomsday Calculation: How an Equation That Predicts the Future Is Transforming Everything We Know About Life and the Universe by William Poundstone

Albert Einstein, anthropic principle, Any sufficiently advanced technology is indistinguishable from magic, Arthur Eddington, Bayesian statistics, behavioural economics, Benoit Mandelbrot, Berlin Wall, bitcoin, Black Swan, conceptual framework, cosmic microwave background, cosmological constant, cosmological principle, CRISPR, cuban missile crisis, dark matter, DeepMind, digital map, discounted cash flows, Donald Trump, Doomsday Clock, double helix, Dr. Strangelove, Eddington experiment, Elon Musk, Geoffrey Hinton, Gerolamo Cardano, Hans Moravec, heat death of the universe, Higgs boson, if you see hoof prints, think horses—not zebras, index fund, Isaac Newton, Jaron Lanier, Jeff Bezos, John Markoff, John von Neumann, Large Hadron Collider, mandelbrot fractal, Mark Zuckerberg, Mars Rover, Neil Armstrong, Nick Bostrom, OpenAI, paperclip maximiser, Peter Thiel, Pierre-Simon Laplace, Plato's cave, probability theory / Blaise Pascal / Pierre de Fermat, RAND corporation, random walk, Richard Feynman, ride hailing / ride sharing, Rodney Brooks, Ronald Reagan, Ronald Reagan: Tear down this wall, Sam Altman, Schrödinger's Cat, Search for Extraterrestrial Intelligence, self-driving car, Silicon Valley, Skype, Stanislav Petrov, Stephen Hawking, strong AI, tech billionaire, Thomas Bayes, Thomas Malthus, time value of money, Turing test

As far as we know, it was just an average big bang, nothing special. Cosmic inflation is taken seriously because it makes many testable predictions. One is that quantum-scale fluctuations in the original dot of vacuum would be blown up to cosmic scale. That would explain why the universe and the cosmic microwave background are so uniform. We can see 14 billion light-years in one direction and then turn our heads (radio telescopes) around to look 14 billion light-years in the opposite direction. What we see looks almost exactly the same. That’s odd enough to rate a name—the “horizon problem.” It’s odd because evenness is normally the result of mixing.

Relativity says no object or signal can travel faster than the speed of light. But in cosmic inflation space itself expands much faster than the speed of light. We observe a greatly magnified point sample of the original “batter.” The detail we see, in the form of the large-scale distribution of galaxies and the structure of the cosmic microwave background, corresponds to the quantum grain of the original vacuum. Space can be curved or flat. We observe it to be remarkably flat, with curvature as close to zero as we can measure it. This is easily understood to be a consequence of inflation. The Earth is a sphere, but it’s so big that it seems flat.


pages: 745 words: 207,187

Accessory to War: The Unspoken Alliance Between Astrophysics and the Military by Neil Degrasse Tyson, Avis Lang

active measures, Admiral Zheng, airport security, anti-communist, Apollo 11, Arthur Eddington, Benoit Mandelbrot, Berlin Wall, British Empire, Buckminster Fuller, Carrington event, Charles Lindbergh, collapse of Lehman Brothers, Colonization of Mars, commoditize, corporate governance, cosmic microwave background, credit crunch, cuban missile crisis, dark matter, Dava Sobel, disinformation, Donald Trump, Doomsday Clock, Dr. Strangelove, dual-use technology, Eddington experiment, Edward Snowden, energy security, Eratosthenes, European colonialism, fake news, Fellow of the Royal Society, Ford Model T, global value chain, Google Earth, GPS: selective availability, Great Leap Forward, Herman Kahn, Higgs boson, invention of movable type, invention of the printing press, invention of the telescope, Isaac Newton, James Webb Space Telescope, Johannes Kepler, John Harrison: Longitude, Karl Jansky, Kuiper Belt, Large Hadron Collider, Late Heavy Bombardment, Laura Poitras, Lewis Mumford, lone genius, low earth orbit, mandelbrot fractal, Maui Hawaii, Mercator projection, Mikhail Gorbachev, military-industrial complex, mutually assured destruction, Neil Armstrong, New Journalism, Northpointe / Correctional Offender Management Profiling for Alternative Sanctions, operation paperclip, pattern recognition, Pierre-Simon Laplace, precision agriculture, prediction markets, profit motive, Project Plowshare, purchasing power parity, quantum entanglement, RAND corporation, Ronald Reagan, Search for Extraterrestrial Intelligence, skunkworks, South China Sea, space junk, Stephen Hawking, Strategic Defense Initiative, subprime mortgage crisis, the long tail, time dilation, trade route, War on Poverty, wikimedia commons, zero-sum game

Hundreds of AM, FM, and XM stations are beaming radio waves through your body right now, the phone part of your smartphone is communicating in microwaves with a cell phone tower, and the map features of your smartphone are talking to GPS satellites overhead via microwaves too. You’re probably receiving visible light from a nearby lamp and, if its bulb is incandescent, infrared light as well. Meanwhile, across the universe, an ancient, persistent, pervasive sea of microwave radiation forms the cosmic microwave background, a legacy of the Big Bang. Most celestial goings-on emit light in multiple wavelengths simultaneously. For example, the explosion of a massive star—a supernova—is a cosmically commonplace (though locally rare) and seriously high-energy event that, in addition to visible light, blasts out prodigious quantities of X-rays.

Use data from ESA’s XMM-Newton and NASA’s Chandra X-ray Observatory to determine the mass. Today astrophysicists see a universe immeasurably more complex than the one conceptualized by Newton or Herschel. Some things, such as stellar nurseries, glow brilliantly in infrared but are almost completely dark in the visible range. So, too, is the cosmic microwave background. Yet in spite of all the mind-blowing discoveries made in invisible wavelengths since the end of World War II, visible-light detectors still yield surprises. In 2016 astrophysicists using the Hubble Space Telescope announced that they had found the most distant galaxy ever seen, gleaming 13.4 billion light-years from Earth.

Various permutations of astrophysicists from Canada, Chile, France, Israel, Italy, Poland, Spain, the United Kingdom, and the United States have been studying the quantum effects of the intense magnetic field surrounding a neutron star; a vast intergalactic void that is helping to propel our galaxy through space by repelling it; an as-yet-unexplained cool region in the cosmic microwave background (imprint from the Big Bang) that may offer the first evidence of the multiverse. They’ve found a large, dim, relatively nearby spheroidal galaxy, similar in total mass to the Milky Way, that was only recently discovered because 99.99 percent of it consists of dark matter. They’ve witnessed an interstellar asteroid, the solar system’s first visitor from elsewhere in the Milky Way, which plunged past the Sun and onward toward Mars at 300,000 kilometers per hour in the fall of 2017.


pages: 360 words: 101,636

Engineering Infinity by Jonathan Strahan

augmented reality, cosmic microwave background, dark matter, gravity well, Kim Stanley Robinson, low earth orbit, planetary scale, Pluto: dwarf planet, post scarcity, quantum entanglement, Schrödinger's Cat, technological singularity, Ted Kaczynski

The galaxy was alive with the Network, with the blinding Hawking incandescence of holeships, thundering along their cycles; the soft infrared glow of fully grown servers, barely spilling a drop of the heat of their stars; the faint gravity ripples of the darkships' passage in the void. But the galaxy was half a million light years away. And the only thing the server could hear was the soft black whisper of the cosmic microwave background, the lonely echo of another birth. It did not take the server long to understand. The galaxy was an N-body chaos of a hundred billion stars, not a clockwork but a beehive. And among the many calm slow orbits of Einstein and Newton, there were singular ones, like the one of the star that the server had been planted on: shooting out of the galaxy at a considerable fraction of lightspeed.

But he was not a Surface Tactical anymore and there was no surface here, no city with its weak gravity and strong spin to complicate the equations, only speed and darkness and somewhere in the darkness the target. There was no knowing what instruments the nomads had but Ish hoped to evade all of them. The platform's outer shell was black in short wavelengths and would scatter or let pass long ones; the cold face it turned toward the nomad weapon was chilled to within a degree of the cosmic microwave background, and its drives were photonic, the exhaust a laser-tight collimated beam. Eventually some platform would occlude a star or its drive beam would touch some bit of ice or cross some nomad sensor's mirror and they would be discovered, but not quickly and not all at once. They would be on the nomads long before that


pages: 385 words: 98,015

Einstein's Unfinished Revolution: The Search for What Lies Beyond the Quantum by Lee Smolin

adjacent possible, Albert Einstein, Brownian motion, Claude Shannon: information theory, cosmic microwave background, cosmological constant, Ernest Rutherford, Isaac Newton, Jane Jacobs, Jaron Lanier, John von Neumann, Murray Gell-Mann, mutually assured destruction, quantum entanglement, Richard Feynman, Richard Florida, Schrödinger's Cat, Stephen Hawking, Stuart Kauffman, the scientific method, Turing machine

There have been a few attempts to drive quantum systems out of quantum equilibrium and test these predictions, but, so far, they haven’t succeeded in either discovering quantum non-equilibrium or ruling out pilot wave theory. One place to look for out-of-quantum-equilibrium physics is in the very early universe. Valentini and collaborators have hypothesized that the universe began in the big bang out of equilibrium, and equilibrated as it expanded. This might have left traces in the cosmic microwave background, or CMB, which are being searched for, but there is no clear evidence yet.15 * * * — LET’S COME BACK TO the Schrödinger’s cat experiment and see how pilot wave theory resolves it. Pilot wave theory asserts that quantum mechanics applies universally. There is only Rule 1, and it applies to all cases.

See also wave-function collapse gravity and, 139–40 models, beyond, 222–24 special relativity and, 141 spontaneous, 131 of wave function, 139, 186 collapse theory dynamical, 299 measurement problem and, 131–32, 133, 142, 144–45 noise and, 133 pilot wave theory and, 131 theory of relativity and, 133 collisions, 20, 73 communication, 46–47, 189 communism, 114–15, 115n commutativity, 18–20 complementarity, 84, 101, 114 Bohr and, 85–86, 90 consistency of, 90 definition of, 298 pilot wave theory and, 101 uncertainty principle and, 92–93 complex systems, 248 computation, definition of, 192 computers, 191–92 computer science, quantum physics and, 185 configuration space, 122–24, 123, 217–18 consciousness, xv conservation of momentum, 263 consistent histories approach, 218, 298 constitutive theories, 227 contextuality, 55–57 continuous spontaneous localization (CSL), 130–31 contrary states, 38–43, 45, 123, 298 Copenhagen interpretation, 94, 97, 107, 112, 113, 117, 184, 274 correlated states, 51, 145–47, 146n, 149 Cortês, Marina, 265–67 cosmic microwave background, 121 cosmology, 201, 207, 230–31, 253, 302 Crane, Louis, 193–94 creation rule of events, 267 critical realism, 154 CSL. See continuous spontaneous localization cycles, 268n Dalibard, Jean, 45 Davisson, Clinton, 81–82 de Broglie, Louis, xxviii, 12, 78–81 Einstein and, 81, 103 PhD thesis of, 81, 145 pilot wave theory of, 98–101, 100 Schrödinger and, 82 students of, 118 wave-particle duality and, 83–84, 103 de Broglie, Maurice, 79 de Broglie–Bohm theory.


pages: 444 words: 111,837

Einstein's Fridge: How the Difference Between Hot and Cold Explains the Universe by Paul Sen

Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, anthropic principle, anti-communist, Bletchley Park, British Empire, Brownian motion, Claude Shannon: information theory, Computing Machinery and Intelligence, cosmic microwave background, cosmological constant, Ernest Rutherford, heat death of the universe, invention of radio, Isaac Newton, James Watt: steam engine, John von Neumann, Khan Academy, Kickstarter, Richard Feynman, seminal paper, Stephen Hawking, traveling salesman, Turing complete, Turing test

When the universe was about 379,000 years old, the first atoms formed, and all space was bathed in an orange-red light. Since then the universe has expanded a thousandfold, but that light still fills all of space. So why can’t we see it? Because it has lost energy. Instead of the glow being orange-red, it now takes the form of invisible long-wavelength microwave radiation. This “cosmic microwave background radiation” was first detected by two Bell Laboratories scientists named Arno Penzias and Robert Wilson in 1964 and has been studied extensively since. Think of the entire universe as a giant kiln, which, a long time ago, glowed orange-red. This light energy was most intense at a short wavelength of around a millionth of a meter, meaning its temperature was high, at around 2,700°C.

See also first law of thermodynamics Clausius’s thought experiment using ideal engine and refrigerator and, 55–58, 253 Einstein’s E = mc2 equation on, x, 152–54 Helmholtz’s tract on Kraft and, 47–49, 51–52, 106, 154 Joule’s research and, 28, 30, 154 Noether’s theorem on, 157–59 symmetry and, 159 Thomson’s paper on, 59–60 Conservatory of Arts and Crafts, Paris, 6, 7, 8, 9 convection, in heat flow, 133, 137 coolants, in refrigeration, 111–12, 162, 163, 164, 165 Copenhagen group, 160 cosmic microwave background radiation, 158 cotton-manufacturing industry, 2, 23–24 creation of universe Boltzmann brain theory and, 130 Boltzmann’s creation moment in, 126, 127–30 random fluctuation hypothesis on, 129–30 cryptography, 169, 203 Shannon’s early experience with, 170 Turing’s reputation in, 173–74, 202–4 Dalton, John, 24 Dancer, John Benjamin, 30 dark reaction, in photosynthesis, 122–23 Darwin, Charles, 70–73, 107 age of earth and evolution by natural selection theory of, 70–71 reaction to Thomson’s objection to, 72 Thomson’s critiques of, 71–72, 73 data networks, file compression and digital redundancy in, 182 “Decrease of Entropy by Intelligent Beings, The” (Szilard), 190, 192 De l’Angleterre et des Anglais (Say), 5 Despretz, César-Mansuète, 44–45 developmental biology Turing’s contribution to, 200–201, 217 Turing’s morphogenesis paper and, 205–11, 215–16, 217 Dewar, Daniel, 84 Diesel, Rudolf, 20, 111 diffusion, in morphogenesis, 206, 209, 215 digital age processing of information in, 185 redundancy in file compression in, 182 dissipation of heat, Thompson’s paper on, 59–61 Drunkard’s Walk formula, 150 Dulong, Pierre Louis, 44–45 duty in steam engines Carnot’s theory on, 12 Newcomen engines and, 4, 10 earth age of.


pages: 124 words: 36,360

Kitten Clone: Inside Alcatel-Lucent by Douglas Coupland

"World Economic Forum" Davos, British Empire, cable laying ship, Claude Shannon: information theory, cosmic microwave background, Downton Abbey, Golden arches theory, Great Leap Forward, Hibernia Atlantic: Project Express, hiring and firing, industrial research laboratory, Isaac Newton, Jeff Bezos, Marshall McLuhan, messenger bag, military-industrial complex, Neal Stephenson, oil shale / tar sands, pre–internet, quantum entanglement, Richard Feynman, Silicon Valley, Skype, Steve Jobs, tech worker, technological determinism, TED Talk, Turing machine, undersea cable, upwardly mobile, urban planning, UUNET, Wall-E

Check. Pale yellow enamel paint? Check. Doors with windows that have wire grids embedded in the pane? Check. Electrical-looking stuff everywhere? Check. In 1964, in Crawford Hill, two Bell Labs scientists, Arno Penzias and Robert Wilson, used a radar antenna called the Holmdel Horn to find cosmic microwave background radiation, evidence to confirm the expanding universe. For this, they won the 1978 Nobel Prize, so don’t be deceived by the unassuming community college facade. These days this Bell Labs satellite lab is largely researching fibre optics, where the breakthroughs have also been huge. We enter the building and walk down a narrow hallway like one you’d find in the basement of a church built in the 1950s.


pages: 452 words: 126,310

The Case for Space: How the Revolution in Spaceflight Opens Up a Future of Limitless Possibility by Robert Zubrin

Ada Lovelace, Albert Einstein, anthropic principle, Apollo 11, battle of ideas, Boeing 747, Charles Babbage, Charles Lindbergh, Colonization of Mars, complexity theory, cosmic microwave background, cosmological principle, Dennis Tito, discovery of DNA, double helix, Elon Musk, en.wikipedia.org, flex fuel, Francis Fukuyama: the end of history, gravity well, if you build it, they will come, Internet Archive, invisible hand, ITER tokamak, James Webb Space Telescope, Jeff Bezos, Johannes Kepler, John von Neumann, Kim Stanley Robinson, Kuiper Belt, low earth orbit, Mars Rover, Mars Society, Menlo Park, more computing power than Apollo, Naomi Klein, nuclear winter, ocean acidification, off grid, out of africa, Peter H. Diamandis: Planetary Resources, Peter Thiel, place-making, Pluto: dwarf planet, private spaceflight, Recombinant DNA, rising living standards, Search for Extraterrestrial Intelligence, self-driving car, Silicon Valley, SoftBank, SpaceX Starlink, Strategic Defense Initiative, Stuart Kauffman, telerobotics, Thomas Malthus, three-masted sailing ship, time dilation, transcontinental railway, uranium enrichment, Virgin Galactic, Wayback Machine

Beyond these, NASA has plans for another generation of terrific space telescopes, able to study the universe with unprecedented power through windows blurred or completely blocked by the Earth's atmosphere. These include the WideField InfraRed Space Telescope (WFIRST),3 the Gravitational Wave Surveyor,4 the Cosmic Microwave Background Surveyor,5 the Far InfraRed Surveyor,6 the Lynx X-Ray Surveyor,7 the Habitable Exoplanet Imaging Mission,8 the Origins Space Telescope,9 and, most important, the Large Ultra Violet Optical InfraRed (LUVOIR)10 Surveyor. Currently planned for a circa-2030 launch to Earth-sun L2, LUVOIR (previously designated the Advanced Technology Large-Aperture Space Telescope, or ATLAST) will be an ultraviolet, optical, and near-infrared free-flying instrument whose 16-meter diameter will give it powers dwarfing both the 2.4-meter Hubble and the 6.5-meter Webb.

See carbon dioxide colonization of asteroids, 131–35, 142–43 chemistry for space settlers of, 150 leading to new types of societies, 143–45 list of what needs to be done, 327–34 of Mars, plate 7, 101–23 chemistry for space settlers of, 146–50 commercial benefits of, 114–17 “Dragon Direct” plan, 108 habitation module, plate 5 leading to a human asteroid mission, 131–32 as new frontier for humanity, 277–79, 316 as a public-private enterprise, 328 raising families on Mars, plate 8 use of greenhouses, 101, 113, 115, 278 of the moon, 69–99 achieving long-range mobility on, 80–81 chemistry for space settlers of, 145–46 energy sources, 82–91 phases of Moon Direct program, 75 as a public-private enterprise, 317 range and lunar accessibility of an LEV, 81 sending solar energy back to earth, 82–83 use of microwaves to extract water vapor, 79 need for low cost spaceflight, 25–26 Noah's Ark Eggs (seed spaceships), 209–14 of outer solar system Jovian system, 166–70 obstacles to settling, 173–74 Saturn system, 160–65, 173 reasons for pursuing for the challenges, 271–86 for the future we can create, 315–25 to gain more freedom, 301–25 for the knowledge gained, 249–69 for survival of humanity, 287–99 terraforming other worlds, 215–45 time needed for interstellar civilizations to spread, 266–67 vision of for the year 2069, 317 vision of for the year 3000, 319–24 Columbus, Christopher, 174, 182, 208, 316, 328 comets, 129, 130, 151, 170, 171, 195–96 commercial benefits of spaceflight, 66–68 on asteroids, 136–40 commercial energy system in space, 57–60 communications and data satellites, 51–56 CubeSat revolution, 54–56 fast global travel on Earth, 40–43 on Mars, 114–17 orbital industries, 48–50 orbital research labs, 47–48, 50 of outer solar system, 161–62 commercial development of Titan, 162–65 Jovian system, 166–70 in the Kuiper Belt and Oort Cloud, 171–72 space business parks, 50–51 space tourism, 45–47 space triangle trade (Earth-Mars-asteroids), 140–42 See also mining Commercial Orbital Transportation Services (COTS), 330–31 Commonwealth Fusion Systems (CFS), 176–77 communications and data satellites, 23, 52–56, 63, 64, 65, 277 CubeSat revolution, 54–56 potential impact of on World War II, 61–62 “Compact Fusion Reactor” (CFR) project, 180 complexity theory applied to the universe, 262–63 computers, early, 233–34 constants, role of in physics, 260–61 Coons, Steve, 148 Coppi, Bruno, 176–77 Cosmic Microwave Background Surveyor, 251 cosmic rays, 104, 132, 135, 167, 192, 253, 259, 339 cost-plus contracting, 22–24, 330–31 COTS (Commercial Orbital Transportation Services), 330–31 Crèvecoeur, Jean de, 274 cryogenic hydrogen and oxygen, 102, 339–40 CT Fusion, 180 CubeSat revolution, 54–56 Curiosity rover (NASA), 13, 106 Customs and Border Protection (US), 138 Cygnus (constellation), 240 D.


pages: 157 words: 47,161

The God Equation: The Quest for a Theory of Everything by Michio Kaku

Albert Einstein, anthropic principle, Arthur Eddington, cosmic microwave background, cosmological constant, dark matter, double helix, Eddington experiment, Edmond Halley, Ernest Rutherford, fudge factor, Higgs boson, Isaac Newton, Johannes Kepler, Large Hadron Collider, Murray Gell-Mann, Olbers’ paradox, place-making, Richard Feynman, Schrödinger's Cat, Stephen Hawking, Tacoma Narrows Bridge, uranium enrichment

These ripples, in turn, represent tiny quantum fluctuations that existed at the instant of the Big Bang that were then magnified by the explosion. What is controversial, however, is that there appear to be irregularities, or blotches, in the background radiation that we cannot explain. There is some speculation that these strange blotches are the remnants of collisions with other universes. In particular, the CMB (cosmic microwave background) cold spot is an unusually cool mark on the otherwise uniform background radiation that some physicists have speculated might be the remnants of some type of connection or collision between our universe and a parallel universe at the beginning of time. If these strange markings represent our universe interacting with parallel universes, then the multiverse theory might become more plausible to skeptics.


How to Make a Spaceship: A Band of Renegades, an Epic Race, and the Birth of Private Spaceflight by Julian Guthrie

Albert Einstein, Any sufficiently advanced technology is indistinguishable from magic, Apollo 11, Apollo 13, Ayatollah Khomeini, Berlin Wall, Boeing 747, Charles Lindbergh, cosmic microwave background, crowdsourcing, Dennis Tito, Doomsday Book, Easter island, Elon Musk, Fairchild Semiconductor, fear of failure, fixed-gear, Frank Gehry, Gene Kranz, gravity well, Herman Kahn, high net worth, Iridium satellite, Isaac Newton, ITER tokamak, Jacquard loom, Jeff Bezos, Johannes Kepler, Larry Ellison, Leonard Kleinrock, life extension, low earth orbit, Mark Shuttleworth, Mars Society, Menlo Park, meta-analysis, Murray Gell-Mann, Neil Armstrong, Oculus Rift, off-the-grid, orbital mechanics / astrodynamics, packet switching, Peter H. Diamandis: Planetary Resources, pets.com, private spaceflight, punch-card reader, Richard Feynman, Richard Feynman: Challenger O-ring, Ronald Reagan, Scaled Composites, side project, Silicon Valley, South of Market, San Francisco, SpaceShipOne, stealth mode startup, stem cell, Stephen Hawking, Steve Jobs, Strategic Defense Initiative, urban planning, Virgin Galactic

Created in the nineteenth century by MIT founder William Barton Rogers, the department had among its faculty and graduates a dazzling array of Nobel Prize winners and some of the field’s greatest minds, from Richard Feynman (quantum electrodynamics), Murray Gell-Mann (elementary particles), Samuel Ting and Burton Richter (subatomic particles), to Robert Noyce (Fairchild Semiconductor, Intel), Bill Shockley (field-effect transistors), George Smoot (cosmic microwave background radiation), and Philip Morrison (Manhattan Project, science educator). Physics classes at MIT had been flooded with students in the years following the launch of Sputnik and the success of Apollo. Peter and his mom made their way to the biology department. He had an understanding with his parents that if he was accepted at MIT, he would stay on his premed track.

Oliver Smoot was a pledge at the Lambda Chi Alpha fraternity, and he got picked as the standard unit for the bridge in the 1958 pledge season. Some of his “brothers” laid him out three hundred times along the bridge until the cops came and chased them off. Smoot’s cousin George Smoot became very famous for his work on the COBE satellite, which first measured anisotropy in the cosmic microwave background radiation. *NASA’s biggest total employment year was 1965, when the space agency employed 34,300 in-house employees and 376,700 out-of-house contractor employees. *The Voyager design bears some resemblance to that of the famous World War II Lockheed P-38 Lightning. Burt moved the horizontal stabilizers forward, relocated the two engines into the center fuselage, and made one a puller and the other a pusher, thereby allowing him to lighten up and extend the wingspan.


pages: 186 words: 64,267

A Brief History of Time by Stephen Hawking

Albert Einstein, Albert Michelson, anthropic principle, Apple Newton, Arthur Eddington, bet made by Stephen Hawking and Kip Thorne, Brownian motion, cosmic microwave background, cosmological constant, dark matter, Eddington experiment, Edmond Halley, Ernest Rutherford, Henri Poincaré, Isaac Newton, Johannes Kepler, Magellanic Cloud, Murray Gell-Mann, Richard Feynman, Stephen Hawking

This would be a revolution in our view of the unification of the laws of science but it would not change the most important point: that the universe is governed by a set of rational laws that we can discover and understand. On the observational side, by far the most important development has been the measurement of fluctuations in the cosmic microwave background radiation by COBE (the Cosmic Background Explorer satellite) and other collaborations. These fluctuations are the fingerprints of creation, tiny initial irregularities in the otherwise smooth and uniform early universe that later grew into galaxies, stars, and all the structures we see around us.


pages: 277 words: 87,082

Beyond Weird by Philip Ball

Albert Einstein, Bayesian statistics, cosmic microwave background, dark matter, dark pattern, dematerialisation, Ernest Rutherford, experimental subject, Higgs boson, Isaac Newton, John von Neumann, Kickstarter, Large Hadron Collider, Murray Gell-Mann, quantum cryptography, quantum entanglement, Richard Feynman, Schrödinger's Cat, Stephen Hawking, theory of mind, Thomas Bayes

We could conduct the experiment in space. Sure, there are some stray molecules even there, but let’s assume we could get rid of them too. What’s to induce decoherence then? Even interstellar space, though, is not free of photons. They are humming about everywhere in the cosmos, in the form of the cosmic microwave background, the faint glimmer left over from the fury of the Big Bang itself. These photons alone – the remnants of creation – will decohere such a superposition of a dust grain in about one second. The point is not that, in extremis, you can find a way to render observation of this ‘mesoscopic’ superposition feasible – if, that is, you can work out how to do it in space without actually disrupting the state in the measurement process itself.


pages: 266 words: 78,986

Quarantine by Greg Egan

cosmic microwave background, dark matter, disinformation, fudge factor, intermodal, pattern recognition, placebo effect, Schrödinger's Cat, time dilation, warehouse robotics

Stars vanished first from the direction in which The Bubble was closest, and last where it was furthest away—precisely behind the sun. The Bubble presents an immaterial surface which behaves, in many ways, like a concave version of a black hole’s event horizon. It absorbs sunlight perfectly, and emits nothing but a featureless trickle of thermal radiation (far colder than the cosmic microwave background, which no longer reaches us). Probes which approach the surface undergo red shift and time dilation—but experience no measurable gravitational force to explain these effects. Those on orbits which intersect the sphere appear to crawl to an asymptotic halt and fade to black; most physicists believe that in the probe’s local time, it swiftly passes through The Bubble, unimpeded—but they’re equally sure that it does so in our infinitely distant future.


pages: 337 words: 93,245

Diaspora by Greg Egan

conceptual framework, cosmic abundance, cosmic microwave background, Fermat's Last Theorem, gravity well, Jacquard loom, stem cell, telepresence, telepresence robot, Turing machine

The whole view was heavily stylized, and the image was binary: not even a gray scale, just black and white. But the software had concluded that the vertical lines attached to each star were a kind of luminosity scale, giving the distance at which the energy density of the star's radiation fell to 61 femtojoules per cubic meter coincidentally or not, the same as the cosmic microwave background. For Voltaire, this distance was about one eighteenth of a light year; for the sun, about one seventh. The orthogonal projection enabled the "luminosity lines" for a few hundred stars to be visible simultaneously, all at the same scale; a realistic perspective from anywhere in the galaxy would have shown all but a few diminished by distance to the point of invisibility, making the intended meaning much more obscure.


pages: 335 words: 97,468

Uncharted: How to Map the Future by Margaret Heffernan

"World Economic Forum" Davos, 23andMe, Affordable Care Act / Obamacare, Airbnb, Alan Greenspan, Anne Wojcicki, anti-communist, Atul Gawande, autonomous vehicles, banking crisis, Berlin Wall, Boris Johnson, Brexit referendum, chief data officer, Chris Urmson, clean water, complexity theory, conceptual framework, cosmic microwave background, creative destruction, CRISPR, crowdsourcing, data science, David Attenborough, discovery of penicillin, driverless car, epigenetics, Fall of the Berlin Wall, fear of failure, George Santayana, gig economy, Google Glasses, Greta Thunberg, Higgs boson, index card, Internet of things, Jaron Lanier, job automation, Kickstarter, Large Hadron Collider, late capitalism, lateral thinking, Law of Accelerating Returns, liberation theology, mass immigration, mass incarceration, megaproject, Murray Gell-Mann, Nate Silver, obamacare, oil shale / tar sands, passive investing, pattern recognition, Peter Thiel, prediction markets, RAND corporation, Ray Kurzweil, Rosa Parks, Sam Altman, scientific management, Shoshana Zuboff, Silicon Valley, smart meter, Stephen Hawking, Steve Ballmer, Steve Jobs, surveillance capitalism, TED Talk, The Signal and the Noise by Nate Silver, Tim Cook: Apple, twin studies, University of East Anglia

Just as the birth of the financial forecasting business depended on the simultaneous advent of trains, telegraph and statistics, periods of breakthrough require that knowledge, technology, resources and human ingenuity align. Everyone would like more of those moments. But other breakthroughs, like the discovery of penicillin or of cosmic microwave background radiation, exist at the opposite end of the spectrum: big, important discoveries that are flukes, neither predicted nor predictable. Everyone would love more of those too – but they aren’t planned; they emerge and are understood only retrospectively. There are also always ‘sleeping beauties’,17 big, powerful ideas – such as Mendel’s concept of inheritance via the mechanism that we now call genes – that need other notable discoveries before the full import of their thinking is understood.


The Last Stargazers by Emily Levesque

Albert Einstein, Apollo 11, Arthur Eddington, Boeing 747, Carrington event, cognitive dissonance, complexity theory, cosmic microwave background, dark matter, Eddington experiment, Harvard Computers: women astronomers, if you see hoof prints, think horses—not zebras, it's over 9,000, Kuiper Belt, Kwajalein Atoll, lolcat, Magellanic Cloud, mass immigration, messenger bag, Neil Armstrong, Pluto: dwarf planet, polynesian navigation, the scientific method

The birds were producing a coat of what Arno politely referred to as a “white dielectric substance,” a problem for radio telescopes in particular since bird droppings can transmit electrical signals and mess with detectors. Arno and Robert cleared out pigeons and poop alike in the hopes of fixing the background noise. The bad news was that the hiss remained; the good news was that this proved to be the cosmic microwave background, an electromagnetic relic of the Big Bang and a discovery that netted the two physicists a Nobel Prize. Still, keeping flocks of birds away from radio telescopes has since become a priority, and observatories use everything from metal spikes to (radio-transparent) GORE-TEX shields to sound in their efforts to repel birds and keep their droppings off the telescopes.


Global Catastrophic Risks by Nick Bostrom, Milan M. Cirkovic

affirmative action, agricultural Revolution, Albert Einstein, American Society of Civil Engineers: Report Card, anthropic principle, artificial general intelligence, Asilomar, availability heuristic, backpropagation, behavioural economics, Bill Joy: nanobots, Black Swan, carbon tax, carbon-based life, Charles Babbage, classic study, cognitive bias, complexity theory, computer age, coronavirus, corporate governance, cosmic microwave background, cosmological constant, cosmological principle, cuban missile crisis, dark matter, death of newspapers, demographic transition, Deng Xiaoping, distributed generation, Doomsday Clock, Drosophila, endogenous growth, Ernest Rutherford, failed state, false flag, feminist movement, framing effect, friendly AI, Georg Cantor, global pandemic, global village, Great Leap Forward, Gödel, Escher, Bach, Hans Moravec, heat death of the universe, hindsight bias, information security, Intergovernmental Panel on Climate Change (IPCC), invention of agriculture, Kevin Kelly, Kuiper Belt, Large Hadron Collider, launch on warning, Law of Accelerating Returns, life extension, means of production, meta-analysis, Mikhail Gorbachev, millennium bug, mutually assured destruction, Nick Bostrom, nuclear winter, ocean acidification, off-the-grid, Oklahoma City bombing, P = NP, peak oil, phenotype, planetary scale, Ponzi scheme, power law, precautionary principle, prediction markets, RAND corporation, Ray Kurzweil, Recombinant DNA, reversible computing, Richard Feynman, Ronald Reagan, scientific worldview, Singularitarianism, social intelligence, South China Sea, strong AI, superintelligent machines, supervolcano, synthetic biology, technological singularity, technoutopianism, The Coming Technological Singularity, the long tail, The Turner Diaries, Tunguska event, twin studies, Tyler Cowen, uranium enrichment, Vernor Vinge, War on Poverty, Westphalian system, Y2K

Adams 2. 1 Introd uction : physical eschatology As we take a longer-term view of our future, a host of astrophysical processes are waiting to unfold as the Earth, the Sun, the Galaxy, and the Universe grow increasingly older. The basic astronomical parameters that describe our universe have now been measured with compelling precision. Recent observations of the cosmic microwave background radiation show that the spatial geometry of our universe is flat (Spergel et al., 2003) . Independent measurements o f the red-shift versus distance relation using Type Ia supernovae indicate that the universe is accelerating and apparently contains a substantial component of dark vacuum energy (Garnavich et al., 1998; Perlmutter et al., 1999; Riess et al. , 1998) . 1 This newly consolidated cosmological model represents an important milestone in our understanding of the cosmos.

Such bursts ofGeV and TeV gamma-rays, if produced by GRBs, might be detected by the Gamma-ray Large Area Space Telescope (GLAST), which will be launched into space in 1 6.V.2008. GeV-TeV gamma-rays from relatively nearby Galactic G RBs may produce lethal doses of atmospheric muons. 12.3 Cosmic ray threats The mean energy density of Galactic cosmic rays is similar to that of starlight, the cosmic microwave background radiation and the Galactic magnetic field, which all happen to be of the order of approximately 1 eV cm - 3 . This energy density is approximately eight orders of magnitude smaller than that of solar light at a distance of one astronomical unit, that is, that of the Earth, from the sun.


Wireless by Charles Stross

air gap, anthropic principle, back-to-the-land, Benoit Mandelbrot, Buckminster Fuller, Cepheid variable, cognitive dissonance, colonial exploitation, cosmic microwave background, Easter island, epigenetics, finite state, Georg Cantor, gravity well, hive mind, hydroponic farming, jitney, Khyber Pass, Late Heavy Bombardment, launch on warning, lifelogging, Magellanic Cloud, mandelbrot fractal, MITM: man-in-the-middle, Neil Armstrong, peak oil, phenotype, Pluto: dwarf planet, security theater, sensible shoes, Turing machine, undersea cable

A soletta now orbits between Earth and the necrosun, filtering out the short-wavelength radiation, and when they periodically remelt the planet to churn the magma, they are at pains to season their new-made hell with a thousand cometary hydrogen carriers. But eventually more extreme measures will be necessary.) The sky is quiet and deathly cold. The universe is expanding, and the wavelength of the cosmic microwave background radiation has stretched. The temperature of space itself is now only thousandths of a degree above absolute zero. The ripples in the background are no longer detectable, and the distant quasars have reddened into invisibility. Galactic clusters that were once at the far edge of detection are now beyond the cosmic event horizon, and though Earth has only traveled two hundred million light-years from the Local Group, the gulf behind it is nearly a billion light-years wide.


Human Frontiers: The Future of Big Ideas in an Age of Small Thinking by Michael Bhaskar

"Margaret Hamilton" Apollo, 3D printing, additive manufacturing, AI winter, Albert Einstein, algorithmic trading, AlphaGo, Anthropocene, artificial general intelligence, augmented reality, autonomous vehicles, backpropagation, barriers to entry, basic income, behavioural economics, Benoit Mandelbrot, Berlin Wall, Big bang: deregulation of the City of London, Big Tech, Bletchley Park, blockchain, Boeing 747, brain emulation, Brexit referendum, call centre, carbon tax, charter city, citizen journalism, Claude Shannon: information theory, Clayton Christensen, clean tech, clean water, cognitive load, Columbian Exchange, coronavirus, cosmic microwave background, COVID-19, creative destruction, CRISPR, crony capitalism, cyber-physical system, dark matter, David Graeber, deep learning, DeepMind, deindustrialization, dematerialisation, Demis Hassabis, demographic dividend, Deng Xiaoping, deplatforming, discovery of penicillin, disruptive innovation, Donald Trump, double entry bookkeeping, Easter island, Edward Jenner, Edward Lorenz: Chaos theory, Elon Musk, en.wikipedia.org, endogenous growth, energy security, energy transition, epigenetics, Eratosthenes, Ernest Rutherford, Eroom's law, fail fast, false flag, Fellow of the Royal Society, flying shuttle, Ford Model T, Francis Fukuyama: the end of history, general purpose technology, germ theory of disease, glass ceiling, global pandemic, Goodhart's law, Google Glasses, Google X / Alphabet X, GPT-3, Haber-Bosch Process, hedonic treadmill, Herman Kahn, Higgs boson, hive mind, hype cycle, Hyperloop, Ignaz Semmelweis: hand washing, Innovator's Dilemma, intangible asset, interchangeable parts, Internet of things, invention of agriculture, invention of the printing press, invention of the steam engine, invention of the telegraph, invisible hand, Isaac Newton, ITER tokamak, James Watt: steam engine, James Webb Space Telescope, Jeff Bezos, jimmy wales, job automation, Johannes Kepler, John von Neumann, Joseph Schumpeter, Kenneth Arrow, Kevin Kelly, Kickstarter, knowledge economy, knowledge worker, Large Hadron Collider, liberation theology, lockdown, lone genius, loss aversion, Louis Pasteur, Mark Zuckerberg, Martin Wolf, megacity, megastructure, Menlo Park, Minecraft, minimum viable product, mittelstand, Modern Monetary Theory, Mont Pelerin Society, Murray Gell-Mann, Mustafa Suleyman, natural language processing, Neal Stephenson, nuclear winter, nudge unit, oil shale / tar sands, open economy, OpenAI, opioid epidemic / opioid crisis, PageRank, patent troll, Peter Thiel, plutocrats, post scarcity, post-truth, precautionary principle, public intellectual, publish or perish, purchasing power parity, quantum entanglement, Ray Kurzweil, remote working, rent-seeking, Republic of Letters, Richard Feynman, Robert Gordon, Robert Solow, secular stagnation, shareholder value, Silicon Valley, Silicon Valley ideology, Simon Kuznets, skunkworks, Slavoj Žižek, sovereign wealth fund, spinning jenny, statistical model, stem cell, Steve Jobs, Stuart Kauffman, synthetic biology, techlash, TED Talk, The Rise and Fall of American Growth, the scientific method, The Wealth of Nations by Adam Smith, Thomas Bayes, Thomas Kuhn: the structure of scientific revolutions, Thomas Malthus, TikTok, total factor productivity, transcontinental railway, Two Sigma, Tyler Cowen, Tyler Cowen: Great Stagnation, universal basic income, uranium enrichment, We wanted flying cars, instead we got 140 characters, When a measure becomes a target, X Prize, Y Combinator

They include the transistor, a semiconductor which was the foundation of the entire digital universe; not to mention the solar cell, quartz timekeeping, radio astronomy, the laser, satellite communications, the mobile phone network, information theory, the UNIX operating system and programming languages like C and C++. Bell Labs was even pivotal in the discovery of cosmic microwave background radiation, the central evidence for the Big Bang. It's scarcely an exaggeration to say our communication and information infrastructure, the blueprint of the twenty-first century, is built on Bell science and technology. Its West Street lab in Lower Manhattan and its spacious New Jersey campus were at the centre of a seismic change.


pages: 412 words: 122,952

Day We Found the Universe by Marcia Bartusiak

Albert Einstein, Albert Michelson, Arthur Eddington, California gold rush, Cepheid variable, Copley Medal, cosmic microwave background, cosmological constant, Eddington experiment, Edmond Halley, Edward Charles Pickering, Fellow of the Royal Society, fudge factor, Harlow Shapley and Heber Curtis, Harvard Computers: women astronomers, horn antenna, invention of the telescope, Isaac Newton, Louis Pasteur, Magellanic Cloud, Occam's razor, orbital mechanics / astrodynamics, Pluto: dwarf planet, William of Occam

They had friendly arguments about this issue whenever they met, which led to the joke that “everywhere the two men went, the lambda was sure to go.” Lemaître went on to do important work in celestial mechanics and pioneered the use of electronic computers for numerical calculations. He always hoped the explosive origin of the universe would be validated by astronomical observations and at last received news of the discovery of the cosmic microwave background, the remnant echo of the Big Bang, shortly before he died in 1966. His successor at Louvain, Odon Godart, brought the July 1, 1965, issue of the Astrophysical Journal that contained the Nobel Prize-winning report to Lemaître's hospital bed. After his great surge of creativity between 1905 and 1917—the period when he generated both special and general relativity, introduced us to the particle of light called a photon, and fashioned the first relativistic model of the universe—Albert Einstein stepped away from further major developments in either quantum or cosmological theory and primarily tried, unsuccessfully, linking the forces of nature in one grand unified theory.


pages: 635 words: 186,208

House of Suns by Alastair Reynolds

autonomous vehicles, cosmic microwave background, data acquisition, disinformation, gravity well, megastructure, planetary scale, space junk, sparse data, time dilation

The Commonality’s own observations concurred: Andromeda had not so much gone as been blacked out. Just as the Vigilance’s Dyson swarm blocked out the light of the Milky Way, so Andromeda continued to mask the glow of the rest of the universe, all the way back to the fierce simmer of the cosmic microwave background. But the thing that was sitting where Andromeda used to be was not precisely a galaxy, either. It was more like a squat, black toad, a fat blob of darkness with the razor-sharp edge of an event horizon. But it was not a black hole. As the curator had mentioned, there were stars and globular clusters still circling beyond the fringe of the blob, and their orbits were not what one would have expected if they were travelling so close to a black hole’s surface, where frame-dragging would have played a role.


pages: 1,048 words: 187,324

Atlas Obscura: An Explorer's Guide to the World's Hidden Wonders by Joshua Foer, Dylan Thuras, Ella Morton

anti-communist, Apollo 11, Berlin Wall, British Empire, Buckminster Fuller, centre right, Charles Babbage, Charles Lindbergh, colonial rule, Colonization of Mars, cosmic microwave background, cuban missile crisis, dark matter, Day of the Dead, double helix, East Village, Easter island, Exxon Valdez, Fall of the Berlin Wall, Ford Model T, Frank Gehry, germ theory of disease, Golden Gate Park, Google Earth, Haight Ashbury, horn antenna, Ignaz Semmelweis: hand washing, index card, intentional community, Jacques de Vaucanson, Kowloon Walled City, Louis Pasteur, low cost airline, Mahatma Gandhi, mass immigration, mutually assured destruction, off-the-grid, Panopticon Jeremy Bentham, phenotype, Pluto: dwarf planet, Ronald Reagan, Rubik’s Cube, Sapir-Whorf hypothesis, Search for Extraterrestrial Intelligence, trade route, transatlantic slave trade, transcontinental railway, Tunguska event, urban sprawl, Vesna Vulović, white picket fence, wikimedia commons, working poor

They checked their equipment, shooed away some pigeons that had been nesting in the antenna, and listened again. Still the hum persisted. The noise was not coming from the antenna, or anywhere in New Jersey, or anywhere on earth. It came from the universe itself. Penzias and Wilson had just stumbled upon cosmic microwave background. Penzias’s and Wilson’s discovery provided the first observational evidence that the universe began with a Big Bang. The discovery earned them a Nobel Prize in Physics. The decommissioned horn antenna they used for their explosive discovery is now a National Historic Landmark. Holmdel Road and Longview Drive, Holmdel. 40.390760 74.184652 Once the pigeons were shooed away, scientists were able to detect the faint echoes of the Big Bang.


pages: 740 words: 236,681

The Portable Atheist: Essential Readings for the Nonbeliever by Christopher Hitchens

Albert Einstein, Alfred Russel Wallace, anthropic principle, Ayatollah Khomeini, Boeing 747, cognitive bias, cognitive dissonance, cosmic microwave background, cuban missile crisis, David Attenborough, Edmond Halley, Georg Cantor, germ theory of disease, index card, Isaac Newton, liberation theology, Mahatma Gandhi, phenotype, Plato's cave, risk tolerance, stem cell, Stephen Hawking, Thales of Miletus, Timothy McVeigh, traveling salesman, trickle-down economics

But anyone familiar with modern physics will have to agree that certain fundamentals, in particular the great conservation principles of energy and momentum, have not changed in four hundred years.1 The conservation principles and Newton’s laws of motion still appear in relativity and quantum mechanics. Newton’s law of gravity is still used to calculate the orbits of spacecraft. Conservation of energy and other basic laws hold true in the most distant observed galaxy and in the cosmic microwave background, implying that these laws have been valid for over thirteen billion years. Surely any observation of their violation during the puny human life span would be reasonably termed a miracle. Theologian Richard Swinburne suggests that we define a miracle as a nonrepeatable exception to a law of nature.2 Of course, we can always redefine the law to include the exception, but that would be somewhat arbitrary.